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The following notation will be generally followed in this thesis. Any
exceptions will be noted at the place of occurrence.
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P[i,j]
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a pixel at the location of the i th row and jth column of the scene

, and j=l, 2, nimage, where i=1,2, ... nx ..., y

f(.) a functional which maps pixels' spectral attributes into a d-

dimensional real space, f: {pixel spectral responses}_R d
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P,
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P P
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I
the number of pixels within the object P.I
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the spatial-feature-map of object P. in the scene,
I

where L.c_L.=O for all i_j
i I

the local spectral feature vector within the object Pi

Li= { k ;Xk*_ Pi}

V.

I
the local contextual feature vector within the object P.

I

a similarity measure, representing the distance between two
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ABSTRACT

Ghassemian Yazdi, M. Hassan. Ph.D., Purdue University, August 1988. On-

Line Object Feature Extraction for Multispectral Scene Representation. Major

Professor: David A. Landgrebe.

This thesis investigates a new on-line unsupervised object-feature extraction

method that reduces the complexity and costs associated with the analysis of

the multispectral image data and the data transmission, storage, archival and

distribution as well. Typically in remote sensing a scene is represented by

the spatially disjoint pixel-oriented features. It would appear possible to

reduce data redundancy by an on-line unsupervised object-feature

extraction process, where combined spatial-spectral object's features, rather

than the original pixel-features, are used for multispectral scene

representation.

The ambiguity in the object detection process can be reduced if the spatial

dependencies, which exist among the adjacent pixels, are intelligently

incorporated into the decision making process. We define the unity relation

that must exist among the pixels of an object. The unity relation can be

constructed with regard to the: adjacency relation, spectral-feature and

spatial-feature characteristics in an object; e.g. AMICA (Automatic

Multispectral Image Compaction Algorithm) uses the within object pixel-

feature gradient vector as a valuable contextual information to construct the

object's features, which preserve the class separability information within the

data. For on-line object extraction, we introduce the path-hypothesis, and the

basic mathematical tools for its realization are introduced in terms of a

specific similarity measure and adjacency relation.



xi

AMICA is an example of on-line preprocessing algorithm that uses

unsupervised object feature extraction to represent the information in the

multispectral image data more efficiently. As the data are read into the

system sequentially, the algorithm partitions the observation space into an

exhaustive set of disjoint objects simultaneously with the data acquisition

process, where, pixels belonging to an object form a path-segment in the

spectral space. Each path-segment is characterized by an object-feature set.

Then, the set of object-features, rather than the original pixel-features, is

used for data analysis and data classification.

AMICA is applied to several sets of real image data, and the performance

and reliability of features is evaluated. Example results show an average

compaction coefficient of more than 20/1 (this factor is data dependent). The

classification performance is _improved slightly by using object-features rather

than the original data, and the CPU time required for classification is reduced

by a factor of more than 20 as well. The feature extraction process may be

implemented in real time, thus the object-feature extraction CPU time is

neglectable; however, in the simulated satellite environment the CPU time for

this process is less than 15% of CPU time for original data classification.

The work described in this report was supported in part by NASA
Grant NAGW-925.



CHAPTER 1

INTRODUCTION

1.1 Background

The demand for a powerful system in the study of the Earth's resources

(vegetation, water, minerals, etc.), monitoring of the environment, and land

mapping calls for observation methods that will provide increasingly detailed

information about relevant parameters with adequate resolution in time and

space. In view of these needs remote sensing by imagery has rapidly gained

interest in the last decade [1]. In remotely sensed data acquisition systems,

observations of a scene are represented by a large set of multispectral image

data taken by a variety of sensors [2,3]. The reflectance spectrum can be

used to identify a large range of ground cover materials [4].

In the past, data were typically acquired in four to seven spectral bands.

Recent significant developments in sensor technology make possible Earth

observational remote sensing systems with unprecedented spectral

resolution and data dimensionality. The value of these new sensor systems

lies in their ability to acquire a nearly complete optical spectrum for each

pixel in the scene. Such imaging spectrometry now makes possible the

acquisition of data in hundreds of spectral bands simultaneously. For

example, the High Resolution Imaging Spectrometer (HIRIS) now being

developed by NASA for launch in the mid-1990's, is to have 30 meter ground
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resolution, 1000 pixels per scan line, and 192 spectral bands [5]. As a result,

the complexity and costs associated with the analysis of the multispectral

image data and data transmission, storage, archival, and distribution are

likely to increase enormously. Therefore, the search for efficient methods for

scene representation to reduce the amount of data but which do not sacrifice

information content increases in importance. The current work is directed at

the reduction of such data redundancy in the scene representation.

On-line data redundancy reduction is especially important in data systems

involving high resolution remotely sensed image data which require related

powerful communication, archiving, distribution and data analysis

subsystems. High resolution imaging data systems [6], e.g., AIS, AVIRIS, and

HIRIS, are example systems where the application of on-line feature

extraction will be important. AMICA # is an "on-line preprocessing algorithm

that uses unsupervised object-feature extraction" to represent the

information in the multispectral image data more efficiently, to achieve data

redundancy reduction. AMICA incorporates spectral and contextual

information into the object-feature extraction scheme. The algorithm uses

local spectral-spatial features to describe the characteristics of objects in the

scene. Examples of such features are size, shape, location, and spectral

features of the objects. The local spatial features (e.g., size, shape, location

and orientation of the object in the scene) of the objects are represented by a

so-called spatial-feature-map. The spectral features of an object are

represented by a d-dimensional vector.

# For simplicity from now on the "on-line unsupervised object-feature extraction algorithm"will
be referred as AMIOA (Automatic Multispectral Image Compaction Algorithm)
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1.2 Objective of the Investigation

The objective of this research is to develop a joint unsupervised object

extraction and feature representation technique for removal of redundant

data in high resolution multispectral image data for remotely sensed scene

representation. On-line removal of redundant data is important in reducing

costs and time delays in links between the sensor and the information user,

or alternately on-line removal of redundancy can be used to obtain higher

performance in the data analysis. For implementing this concept, the AMICA

is investigated with emphasis given to practical data system considerations.

The technique is intended as an on-line unsupervised object-feature

extraction technique for scene representation, to achieve data redundancy

reduction. In the rest of the thesis this technique, the joint unsupervised

object extraction and feature representation, will be referred to as "object-

feature extraction" or alternately "image compaction."

This technique is based on the fundamental assumption that the scene is

segmented into objects such that all samples (pixels) from an object are

members of the same class; hence, the scene's objects can each be

represented by a single suitably chosen feature set. Typically the size and

shape of objects in the scene vary randomly, and the sampling rate and

therefore the pixel size are fixed. It is reasonable to assume that the sample

data (pixels) from a simple object have a common characteristic. A complex

scene consists of simple objects. Any scene can thus be described by

classifying the objects in terms of their features and by recording the relative

position and orientation of the objects in the scene.
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The proposed image compaction can be thought of as a combined object

extraction and feature representation process, where, object extraction is a

process of scene segmentation that extracts similar groups of contiguous

pixels in a scene as objects according to some numerical measure of

similarity. Intuitively, objects have two basic characteristics: they exhibit an

internal regularity, and they contrast with their surroundings. Because of the

irregularities due to the noise, the objects do not exhibit these characteristics

in an obvious sense. The ambiguity in the object detection process can be

reduced if the spatial dependencies, which exist among the adjacent pixels,

are intelligently incorporated into the decision making process.

In this work a new method for detection of objects is developed for on-line

object-feature extraction. This method utilizes a new technique based on a

so-called unity relation which must exist among the pixels within an object.

This unity relation among the pixels of an object is defined with regard to an

adjacency relation, spectral features, and spatial features in an object.

The technique must detect objects in real-time and represent them by means

of an object-feature. The unity relation, for on-line object-feature extraction,

can be realized by the path-hypothesis. The path-hypothesis is based on the

fundamental assumption that pixels from an object are sequentially

connected to each other by a well-defined relationship in the observation

space, where the spectral variation between two consecutive points in the

path follows a special rule; i.e. each pixel in an object has a certain unity

relationship with the corresponding path in the observation space. The path-

hypothesis is explained and illustrated in the next chapter.
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By employing the path-hypothesis and using an appropriate metric for

similarity measure, the scene can be segmented into objects. Viewing the

scene segmentation from this perspective, a new on-line object detection

process (for scene representation) is developed for unsupervised object-

feature extraction in remotely sensed ground cover data.

The feature extraction process is based on the fundamental assumption that

reasonably well defined objects in the scene can be represented by a

suitably chosen feature set, which is extracted from the multispectral image

data. An object is described by a feature-set (so-called object-feature) of

parametric primitives which will be explained in chapter two. The

performance of a feature extraction process is measured in terms of the

information-bearing quality of the features versus the data set size. Since the

noise measurement on one pixel does not influence the measurement noise

for another pixel, the effect of noise is decreased substantially by averaging

the spectral response of the pixels within an object. The reliability of selected

object-features is investigated in chapter four.

In summary, the proposed on-line unsupervised object-feature extraction

process for an efficient scene representation consists of four major steps:

object detection: Pixels from an object are sequentially connected to each

other with an appropriate path. Any two points of this path satisfy a

certain well defined unity relationship. This relation is defined by a

specific measure in the observation space. Based on this hypothesis a

functional for measuring the unity relation is defined. By using this

functional the unity relation between pixels is measured, and an
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appropriate path-segment is selected; i.e. pixels in an object form a

path-segment in the observation space.

segmentation: The scene is partitioned into a finite, but unknown number

of objects by checking the unity relation among adjacent pixels, which

corresponds with growing the path-segment in the observation space.

feature extraction: Each object is represented by an object-feature set in

the "feature space." The information about attributes of a given object,

such as size and location, the object's spectral and contextual features

can be used for representation of an object in the feature space.

measuring feature relevancy: By using an efficient measure the choice

of feature relevancy in the feature space is checked. Features may then

be extended or merged in the feature space. In real time, this step

occurs simultaneously with the feature extraction process.

The object detection and feature extraction processes are unsupervised and

realizable. After the final step the scene is represented by the relevant

object-features in the "feature space," which reduces the size of the image

data but preserves the useful information. Thus, the reduction of data

redundancy is achieved.

It is expected that this mapping, from the pixel-feature set into the object-

feature set, should generate a relevant feature set for scene representation.

The spatial feature of an object often has only a weak relationship to its class.

However, many classes can be distinguished reasonably well on the basis of

their spectral features, using statistical pattern classification techniques. One
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might expect the classification accuracy to be higher if an unknown object is

classified using spectral-contextual features rather than when it is classified

using only the measurement made on the pixels without context.

Spectral information of surrounding pixels is correlated with the center pixel

under consideration. In object detection the spectral features of adjacent

pixels are considered using substantially neighboring information; thus, the

object-feature consists of both spectral and contextual features. Therefore, it

is expected that the classification accuracy to be higher by using object-

feature rather than the individual pixel-feature. A basic premise of object

versus pixel scene representation is that since an object is usually large

compared to the size of a pixel, data analysis on the basis of the object-

features will be much faster and reliable.

1.3 Related Work

Basically, three different approaches have been available to reduce the

redundancy in the image data representation:

° image data compression methods

• feature extraction methods

° image segmentation techniques

Image data compression techniques usually aim at an optimal trade-off

between efficiency and implementation simplicity, according to the user's

needs. Data compression is the science and art of processing information to

obtain a simple representation with at most a tolerable loss of fidelity. Such

simplification may be necessitated by storage constraints, bandwidth
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t

limitation,, or communications channel capacity. Fidelity of the eventual

reproduction of the information based on the simplified or compressed

representation is measured by mathematical distortion measures [7] such as

error or purely subjective methods based on psychophysical tests (e.g.,

subjective image appearance).

Many methods and techniques are known for image data compression

[8,9,10]:

(a) Methods based on image processing in the spatial domain:

predictors, interpolators, delta modulation, differential pulse code

modulation, variable word-length encoding, etc.

(b) Methods based on a preliminary mapping of the image data in a

transformed domain and on a subsequent suitable selection of the

transformed data: transformed coding, e.g., based on the Discrete

Fourier, Hadamard, Walsh, Haar, Karhunen-Loeve, etc. transforms.

(c) Hybrid methods employing a combination of methods (a) and (b).

Generally these methods are used for one-dimensional (in a spectral sense)

image data; e.g., television signals. But for high-dimensional (again, in a

spectral sense) images, especially when the process should be on-line and

unsupervised, those methods are not as practical.

The second approach to image data redundancy reduction uses spectral

feature extraction methods. In data analysis the problem of choosing the

relevant features for a set of multispectral image data is referred to as feature

selection. Feature selection is the science or art of processing data to obtain
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a simple representation with information per unit data volume maximized. In

statistical pattern recognition, data analysis and signal processing feature

selection reduce the information redundancy, allowing a simpler description

of the system under_conside ration. In multispectral image data, feature

selection also reduces the total computational time whenever the analysis

involves a combinatorial handling of features, as in computer data

classification. In most of the cases, feature extraction improves the data

classification performance [11,12].

In the literature on this subject, there are many examples where the feature

selection problem is handled by using linear statistical methods, such as

variance and principal component analysis [13,14]. Some efforts have also

been made to select features in the case of non-linear models [15]. The

transformation can be parametric or nonparametric [16] but should reduce

dimensionality and at the same time preserve the information necessary for

identification of the spectral response.

One of the traditional feature extraction techniques is the Karhunen-Loeve, or

principal component, transformation [17]. However, construction of this

transformation requires estimation of the covariance matrix, and this process

would take on the order of 1013 arithmetic operations for a typical scene 10

by 10 km such as will be acquired by AVIRIS. On the other hand,

unfavorable conditions arise whenever the sample of points is so small, or

the number of features is so large, that the "low of large numbers" is not

applicable and the Gaussian distribution assumption is a weak hypothesis

[18,19]. Or especially when the data processing is on-line and the analysis

for feature extraction is in real time, in this case it should be very fast and
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unsupervised. Thus, the above approaches are not as practical. Clearly,

more computationally efficient transformations are needed for the analysis of

multispectral image data.

An extensive bibliography of published papers and reports dealing with

scene segmentation and models is presented in [20-31]. Image

segmentation and clustering are both methods of grouping data. The

difference between image segmentation and clustering is that in clustering,

the grouping is done in the measurement space; in image segmentation, the

grouping is done on the spatial domain of the image. Generally, two basic

approaches to scene segmentation have appeared in the literature: the

"edge detection" approach, which attempts to exploit object contrast

[20,21,22], and the "region growing" approach, which uses intra-object

similarity [23,24,25]. The edge detection or boundary finding approach has

two steps. First, points along the boundaries of objects are found, then the

complete boundaries are derived from the boundary points. Among the

techniques used to detect boundary points are local gradient, template

matching, two-dimensional function fitting, clustering and gradients estimated

from a variable sized neighborhood.

The gradient approach, in general, is inherently noisy and produces borders

that are discontinuous while also producing spurious isolated points. An

algorithm developed by Wacker and Landgrebe [26] based on clustering

technique is more stable and less noisy. None of these techniques find

boundary points with little enough error to form complete object boundaries

or guarantee closed boundaries of the objects. Thus, to form a closed

boundary for each object, a heuristic procedure using a-priori information is
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used to fill in missing boundary points and eliminate irrelevant boundary

points. Several heuristic approaches to the problem of edge detection are

given which are effective only when the object shape is restricted.

Previously investigated region growing methods have followed two steps:

first the image is divided into elementary regions, then regions are merged

according to a set of merging rules [25]. In [22] elementary regions are

regions of constant gray levels, and the merging rules are heuristics based

on what the final objects should look like. This method is difficult to use if

objects do not have constant gray levels, as is the case, for multispectral

image data.

Most studies have dealt with one-dimensional (in a spectral sense) image

data only, e.g. television signals, and rarely has attention been devoted to

the multispectral image data. The importance of multispectral image

segmentation, in relation to data classification, has been recognized by

Landgrebe [31]. It has been shown that more accurate and efficient

classification

classifying a

classification.

of LANDSAT data for Earth scenes can be achieved by

whole segment at a time rather than by pixel by pixel

Robertson et al [23] developed a partitioning algorithm to partition an image

into rectangular objects. Robertson used a recursive image segmentation

algorithm by approximating each object by one or more rectangular blocks of

image points, where an image has been divided into successively smaller

blocks until certain stopping criteria are met. The objects represented by

elementary regions are defined by a regular rectangular grid superimposed
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upon image. The merging rule is to merge statistically similar, adjacent

regions. This method works well only if elementary regions can be made

both small enough to allow good boundary approximation and large enough

to preserve the spatial characteristics of the objects of which they are a part.

Gupta and Wintz [24] developed an algorithm to find closed field boundaries

in a multispectral image by partitioning the images into blobs. Gupta used

hypothesis testing by first dividing the image into elementary regions, e.g.

2x2 arrays. The algorithm compares first and second order statistics of

adjacent subsets. Adjacent subsets having similar first and second order

statistics are merged into blobs. In this manner the entire picture is separated

into blobs such that the image elements within each blob have similar

characteristics. By varying either of two parameters the amount of

consideration given to grey level and texture can be adjusted. The algorithm

guarantees closed boundaries, where the boundaries are defined to be the

edges between blobs. The algorithms, RIMPAR [23], BLOB [24] and ECHO

[25], guarantee closed boundaries.

Some of the earlier studies cited above suffered from open boundary

problems, some from the sensitivity to the noise, and mostly from the

limitation due to the necessary conditions requiring large amounts of CPU

time, iterative processing, and some from the dependency on manual

initiation or supervision for threshold assignment. In those approaches that

the extraction of an object is based on a per-defined elementary regions,

even they may guarantee closed boundaries, the extraction of an object with

a complex and irregular boundary is not accurate or it will be very time

consuming. Some object extraction process requires a priori information
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about the scene (e.g., statistical properties of the scene, distribution, shape

and size of object, or number objects in the scene) and require threshold

assignment and supervised initiation when the number of training sample is

so small such that the "low of large numbers" is not applicable and Gaussian

assumption is a weak hypothesis for making a correct decision.

1.4 Thesis Organization

This thesis is organized into five chapters. Following an introduction to the

general concept of numerical scene observation model and methods for

scene description, chapter two introduces basic mathematical tools to realize

the unity relation for object extraction, where the path-hypothesis is

explained and the properties of the unity relation are investigated in several

theorems with their proofs. Based on the unity relation and the path-

hypothesis, the Automatic Multispectral Image Compaction Algorithm

(AMICA) is developed. The flow chart and the details about AMICA are

presented in chapter three. In the fourth chapter, the reliability of object-

features versus pixel-features is investigated and the results of the object-

feature extraction, applied to several sets of real data, are presented. Finally,

in the fifth chapter, the thesis is concluded with a discussion about the object-

feature performance versus the pixel-features.
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CHAPTER 2

SCENE MODEL AND FEATURE EXTRACTION

2.1 Introduction

The objective of this chapter is to introduce the basic components that make

up the structures of an analytical model for scene representation in an

efficient measure space. This process is carried out through a specific feature

extraction method which maps the original data (pixel observation) into an

efficient feature space, called the object-feature-space. The efficiency

criterion for this mapping is the amount of useful information that can be

extracted from these features, versus the data set size.

One of the fundamental tenets of modern science is that a phenomenon

cannot be claimed to be well understood until it can be characterized in

quantitative terms. Viewed in this perspective, much of what constitutes the

core of scientific knowledge may be regarded as a reservoir of concepts and

techniques which can be drawn upon to construct mathematical models of

various types of systems and thereby yield quantitative information

concerning their behavior. In essence a model is something whose structure,

and hence behavior, corresponds in some sense to that of a particular reality

of phenomena. In scene modeling, the structures we use will usually be

mathematical in notation and will have elements of physical attributes in their

nature.
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In this chapter we present a model for a scene containing objects. In this

model the variations which carry the desired information (object features) are

represented in the data, but those variations which do not (noise) are

minimized by averaging: each object can be characterized by the expected

value of spectral responses of pixels within the object together with the object

contextual features. It is assumed that two adjacent objects differ in a

measurable way relative to the spectral features S. or contextual features V..
I I

Objects with small area, for which the number of the pixels within the object is

not sufficient for contextual feature extraction, will be represented only by the

spectral feature. However, in general an object can be described by a set of

three parametric primitives (S i , V i , L i ), where L. is the spatial-feature-map.
I

Following a survey of the general concept of numerical scene representation

and methods for scene description, section four introduces the proposed

technique for unsupervised object-feature extraction. The basics of feature

selection and object-feature reliability are described in section five. In section

six object detection based on the unity relation among the pixels in the

observation-space is explained, and the basic mathematical properties of the

unity relation are determined. After an introduction to similarity measure in

section seven, for realization of the unity relation the path-hypothesis is

introduced; then objects in both observation-space and feature-space are

illustrated. Section seven concludes with construction of the functional for

unity relation test. The equations for feature extraction are derived and

presented in section eight. After a summary about the proposed feature

extraction procedure for scene representation in section nine, this chapter

concludes with a brief discussion of object-feature classification.
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2.2 Remotely Sensed Scene Observation

In remote sensing systems, properties of an unknown scene are determined

at a distant location, through noncontact measurement, based upon the

interaction of the electromagnetic radiation with the scene [4,32]. Remote

sensing has greatly extended man's perception of the world's resources and

interaction of nature and man made influences. Remote sensing has grown

from simple photography and photo interpretation to satellite borne sensors

and sophisticated machine aided analysis. Important developments in

sensor technology, computer systems, pattern recognition theory, and image

processing techniques have brought the remote sensing state of art to the

point where it is a powerful tool for studying the Earth's resources remotely.

In the modern remotely sensed Earth Observation Systems there are two

main distinct activities.: scene representation by numerical data or data

acquisition; and information extraction, by means of which the acquired

numerical data is converted into useful information.

The scene (in this work this is assumed it to be part of the Earth's surface) is

the target of the remote sensing system, which is under investigation and the

interest is to extract information about the scene's structure and content. The

desired information iS assumed to be contained in the spectral, spatial, and

temporal variation of electromagnetic energy coming from the scene which is

gathered by the sensors.

Typically a complex scene is composed of relatively simple objects of

different sizes and shapes, each object of which contains only one class of

surface cover type. The scene is often described by classifying the objects
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and recording their relative positions and orientations in the scene in terms of

tabulated results and/or a thematic-map (class-map), Fig. 2.1.

_J Water _ Oats _ Soybeans

_Wheat _ Corn ['---] Bare-Soil

Fig. 2.1. A typical thematic-map (class-map)
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A critical portion of the data acquisition system is a multispectral sensor.

Multispectral sensor systems employ sensors to observe portions of the

electromagnetic spectrum typically ranging from the visible region to the

reflective infrared regions. Also the thermal portion of the spectrum and other

portions of the electromagnetic spectrum such as microwave region have

important uses in remote sensing.

In a remote sensing system, primary features of a scene are formed by

multispectral observations, which are accomplished by spatially and

spectrally sampling the scene.

A typical multispectral sensor samples several spectral dimensions and one

spatial dimension from the scene at a given instant of time. The second

spatial dimension is provided by the motion of the platform which carries the

scanner over the region of interest, generating a raster scan; alternately, the

raster can be provided by area array detector [6]. Thus, through the data

acquisition system, the scene may be viewed in an image form taken at each

of a number of electromagnetic wavelengths. This image can be thought of

as a multi-layer matrix whose elements are called pixels. The physical model

of a scene after spatially and spectrally sampling is illustrated in Fig. 2.2.

Let P[i,j] be representative of a pixel at the location of the i th row and jth

column of the scanned image of the scene. As shown in Fig.2.2, the number

of pixels in each scan line is nx, and the number of lines in each scene frame

is ny, which both are finite and assumed known.
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Fig. 2.2. Multispectral scene pixel-description
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The instantaneous field of view of the data acquisition system defines the

pixel size (spatial resolution) and is the projection of the detector back

through the optical system onto the scene. The spectral resolution of the data

acquisition system defined the spectral dimensionality d of the data. Figure

2.3 illustrates the spectral and spatial resolution of a pixel-feature.

Spectral Bands

(Spectral Resolution)

i r

2.5
0.4 Wavelength (p. m)

L
Single Pixel

(Spatial Resolution)

Fig.2.3. A typical pixel-feature

The output of the data acquisition system is multi-dimensional data,

represented numerically by an ordered set of d-dimensional vectors. We

represent the multispectral sensor response by a functional .f(.), where this

functional maps the pixers spectral attributes into a d-dimensional real

space.

.f: {pixel spectral responses} _Rd
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It is assumed that d different spectral observations of each single pixel are

obtained by the multispectral sensor. Each pixel is represented numerically,

then, by an d-dimensional set of measurements, denoted by vector Xk in the

observation space, where the vector components are a set of measurement

at each spectral interval; i.e. each value in this set, Xik , iS a real number

proportional to the energy received from the pixel by the sensor in that

particular band of the electromagnetic spectrum.

The vector Xk is then referred to as the feature vector of P[i,j] ; i.e., each pixel

P[i,j] can be identified by knowing its feature Xk. Mathematically this set is

represented by a d-tuple vector and is called a pixel-feature.

t

Xk=[Xlk, X2k..... Xdk] =.f(P[i,j])

where n
P

The set of pixel-features, which represents the whole scene by a subset of

R d space, is called the observation-space and represented by:

P={x1,x2..... Xnp}

is the number of spatial observation (pixels).

n =n .n
p x y

The volume of P is defined for scene representation by the number of spatial

and spectral observations, and is equal to:

v =d.n
P P

Notice that there is a relation between the index of the pixel-feature "k" and

the pixel spatial coordinates in the scene [i,j]. The spatial location of each
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pixel in the scene can be determined uniquely by knowing its row number, i,

and its column number, j, where the index address of a pixel is represented

by a two-tuple [i,j]. An index operator is defined, such that by knowing the

pixel's index address, [i,j], the index of the corresponding pixel-feature in the

observation space, the scalar k, can be determined; i.e., it represents the

index mapping from the spatial domain into the spectral domain. The well

ordered sequence of indices, which represents the whole scene, is called the

spatial-feature-map, L; where L is a subset of natural numbers.

L={k; Xk=.f(p[i,j])e P }

i=1 2, n and j=l 2,... n
' "'" x ' ' Y

The spatial-feature-map is needed to identify the spectral feature of a pixel,

by knowing its spatial coordinates in the scene, in the observation space.

The scene is represented numerically by the pixel-feature-set P together with

the corresponding spatial-feature-map l, of which all elements, for the

scene, are fixed and deterministic.

One of the distinctive characteristics of the spatial dependence in

multispectral data is that the spectral separation between two adjacent pixels

is less than two non-adjacent pixels, because the sampling interval tend to

be generally smaller than the size of an object; i.e., two pixels in spatial

proximity to one another are unconditionally correlated with the degree of

correlation decreasing as the distance between them increases [33].

The results of study on measurement of different order statistical spatial

dependency in image data, specifically the measurement of first, second and
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third order amplitude statistics along a image scan line show considerable

correlation between adjacent pixels [34]. Seyler [35] concluded, from the

measurement of the distribution of the difference between adjacent pixels,

that the probability that two adjacent pixels have the same gray level is about

106 times the probability that they differ by the maximum possible amplitude

difference. Kettig [33] by measuring the spatial correlation of multispectral

data, showed that the correlation between adjacent pixel is much less when

conditional upon being with an object, as compared to unconditional

correlation.

High correlation among adjacent pixels in the observation space represents

redundancy in scene data. When such redundancy occurs, reducing the size

of the observation space should be possible without loss of information.
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2.3 Object vs. Pixel Scene Description

As previously stated the scene is assumed to consist of relatively simple

objects of different sizes and shapes. The resolution of the spatial

representation depends on both pixel size and the interval between samples,

which are usually equal, Fig. 2.2. By under-sampling information is lost;

however, over-sampling will cause increased redundancy.

Typically the size and shape of objects in the scene vary randomly, Fig.2.1,

and the sampling rate, and therefore the pixel size, is fixed; it is inherent in

image data that data-dimensionality (the number of spatial-spectral

observations for scene representation) increases faster than its intrinsic-

dimensionality (the size of the smallest set which can represent the same

scene, numerically, with no loss of information). Because the spatial

sampling interval is usually comparable to the object size, it follows that each

object is represented by an array of similar pixels. Therefore, scene

segmentation into pixels is not an efficient approach for scene

representation; however, a scene can be segmented into objects, and since

the shape and size of objects match the scene variation, scene

representation by simple-objects is more efficient.

An object consists of contiguous pixels from a common class which have a

unity relationship with each other; i.e., their features are statistically similar,

and since the recognition of patterns is based on pattern-feature comparison

(although there is a fluctuation in the spectral response of pixels within an

object) these pixels have the same common characteristic and carry

equivalent "usefUl" information about the scene. The similarity among the
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pixels of an object occurs in part in the form of redundancy in the

measurement (observation) space. Redundancy in the object data implies

that a scene can be segmented into objects, instead of pixels, with no loss of

useful information. Thus the method of scene description by object extraction

will be directed at the reduction of data redundancy in the scene

representation, if the relevant object-feature is selected.

Object detection refers to finding the natural groups among the contiguous

pixels. In other words, the data is sorted into objects such that the "Unity

Relation" holds among members of the same object and not between

members of different adjacent objects. Essentially object detection might be

viewed as assigning appropriate meaning to the terms "natural unions" and

"natural association" where "natural" usually refers to homogeneous and

"well separated structures;" which makes object extraction similar to

clustering process [31].

Object extraction and clustering are similar in the sense that they both are

methods of grouping data; however, spatial considerations make clustering

and object extraction different. Because an object can be textured, the pixels

within an object might not form a compact cluster in the measurement

(observation) space. Also, because there can be several instances of a

particular class of entities in a single image, Fig. 2.1, nonadjacent objects

might be nearly identical in observation space. Another difference is that in

object extraction the existence of a partition that completely separates

objects is guaranteed. However, in clustering, if we allow underlying classes

with overlapping density functions, the classes can never be completely

separated in the observation space.
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Object extraction can be thought of as transforming the original image, which

is a pixel-description of a scene, Fig. 2.2, into an arrangement of object-

description, Fig. 2.4.

Fig. 2.4 Multispectral scene object-description
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An object-description is often better than a pixel-description, for two basic

reasons:

First, more information about the scene entity is available from a

collection of pixels associated with the object than from an

individual pixel associated with the scene. This fact has been

exploited by "object" classification algorithms that make a

classification decision for each group of image points, for example

by sequential classification [11]. The potential advantages of object

classification are especially great when class probability densities

differ in shape but exhibit a high degree of overlap. Classifying

objects instead of pixels also allows the measurement and use of

spatial characteristics such as size, shape and texture, which have

been found to be useful in classification.

Second, an object representation is often more compact than a pixel

description. This savings in storage space or transmission speed

occurs if objects contain enough points so that specifying the

locations and essential properties of the objects takes fewer bits

than specifying the collection of individual pixel properties.

In this thesis a method for detection of objects, based on a specific region

growing method, is developed for automatic scene representation by object-

features versus pixel-features. This method utilizes a new technique, based

on the unity relation and the path hypothesis, which detects objects and

represents them by means of an object-feature in the feature-space
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2.4 Object Model

In the analysis and processing of multispectral images one encounters a

large amount of data. To enable efficient processing of this data, it would be

preferable to have an underlying model that explains the dominant

characteristics of the given image data. Subsequent processing of the

images can be efficiently accomplished by using the models fitted to the data.

With the above scheme, a scene is segmented into spatially disjoint objects:

the image described by the objects' features and by recording the relative

position and orientation of the objects in the scene.

Let L i be the spatial-feature-map of an object P._in the scene. In other words,

P. is a set composed of contiguous pixels belonging to the same class, and
I

L. is the index-set of the pixels in the corresponding object.
I

Pi={Xli' X2i .... ' Xni}

Li={k: Xk_ Pi }

The number of objects in the scene, no , is unknown, but, the scene's spatial-

feature-map consists of union of finite disjoint closed-sets, represented by

L,Vs,

J

L=L1UL2U ... ULno

LnL=O for i#j
i I

Objects in imaged scenes are describable by sets of relevant attributes or

features. These features represent distinct measurements or observable

properties. The object's initial measurements, which are encoded as pixel-



29

features, are subsequently subjected to a object-feature transformation: the

relevant object-feature can be the spatial-feature-map of the scene and the

object spectral-contextual features, which are explained in the next section in

this chapter. Figure 2.5 illustrates an example of object-feature.

\

S. Spectral Feature Si
I

4,

0.4 2.5
Wevelength (_ m)

I1

Spatial-feature-map L i

Fig.2.5. A typical object-feature
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Each of the objects contains a union of similar pixels, and the union of the

simple objects represents the whole scene. All pixels of an object, whose

pixels satisfy the unity relation, can be represented by an object-feature set: a

complex scene consists of objects, any scene can thus be described by

classifying the objects in terms of their relevant object-features Y.. The object-I

feature extraction process is denoted by a nonlinear function _(.) which

maps the observation-space (pixel-feature-set) into a more efficient feature-

space (object-feature-set). The procedure for object feature extraction is

explained in the "Object-Feature Extraction" section of this chapter. Here we

represent the feature extraction only by notation.

_.P_F

The operator _(.) is actually the feature extractor which maps the object's

pixel-features Pi into a point, called object-feature Y. in the feature space. ItI'

is expected that this mapping, from the pixel-feature space into the object-

feature space, should generate a relevant feature set for representation of

the objects' attributes.

Yi=_(Pi )

The set of object-features, F, which represents the whole scene, is called the

feature-space: the scene can be represented by the object-feature-set F. It is

desirable that the amount of useful information conveyed by object-feature-

set, F, be equivalent to the amount of useful information conveyed by the

original data set, P, while at the same time vf, the volume of the feature set,

should be much smaller than v the volume of the original data set.
p'
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Vf << Vp

A system that maps a sequential source set P=PlUP2U ... UP into anno

object-feature set F={Y1, Y2 .... , Yno} defines the compaction system. The

allowed size of the reproduction set is much smaller than the total size of

source set and hence compaction is achieved; i.e., it takes fewer bytes to

specify the reproduction set than the original source set. The compaction

coefficient c is defined as the ratio of the volume of pixel-feature-set, Vp,

divided by the volume of the object-feature-set, vr

c=vp/vf

The accuracy of this system (the information content in the object-feature-set)

is dependent on the parametric primitives which are used in object-feature

construction; however, this accuracy has an upper bound which is controlled

by the level of noise which exists in the acquired data. In the analysis of a set

of data points in multidimensional space, the need to choose the most

relevant features frequently arises. Feature selection techniques are used to

find properties of objects in the scene which can serve as the strongest clues

to their identification. This subject is investigated in the next section where

the appropriate feature will be selected for object representation.
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2.5 Feature Selection

Typically, objects are classified (grouped) by an experimental study of some

phenomenon. One basic property all objects possess is that they are

describable by some set of relevant attributes (features). These features

represent distinct measurements or observable properties. In the case of

physical objects attributes can include, for example, size, shape, texture,

average spectral response, etc. The initial encoding of the attributes is

dictated by the measurement devices in use or by an established convention.

Features may be measured on different scales: qualitative scales; e.g.,

nominal; or quantitative scales; e.g., ordinal, interval, ratio and absolute.

These initial measurements, which are encoded as numerical variables, may

be subsequently subjected to a problem-dependent transform. Qualitative

properties such as small, medium, large, etc. can be replaced by relative

numbers. In this thesis we restrict consideration to a case in which all the

attributes making up the object feature are quantitative. The choice of

relevant features is very task-dependent and may depend more on the

judgment of the system designer or operator than on any other system

components.

In theory, decisions about class membership for a noisy object should be

based upon as many observations of the object as possible, and preliminary

decisions concerning subsets of object-features can provide less than

maximally reliability recognition. Thus theoretically, the most reliable

decision should be based upon all the pixels in the object. Also in theory,
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every result achievable with d variables can also be achieved with d+l

variables, but the converse is not true.

Thus one might expect that by increasing the number of features the object

recognition error rate should decrease or at least stay the same, but in

practice quite often the performance of the features will improve up to a point,

then begin to deteriorate as further attributes are added. This is referred to as

the Hughes' phenomenon [36]. Kovalevsky [37] points out that though in

complicated cases of interdependent variables it is not easy to estimate the

error probability, it is always true that increasing the number of variables

used for taking statistical decisions may only improve the reliability, however

the decision procedure error may become worse.

Duda and Hart [12] comment that for the Bayesian decision procedure

beyond a certain point the inclusion of additional parameters leads to higher

probabilities of error, if the number of training samples is finite. Trunk [19]

shows that the probability of error of the Bayes detector approaches zero as

the dimensionality increases and all parameters are known, but the

probability of error approaches 0.50 (for the two class case) as the

dimensionality increases and the parameters are estimated. Thus, even

though theoretically as many parameters should be used as possible, a

specific decision procedure may become worse by using too many

parameters.

The existence of an optimal set of features is indicated for the representation

of the objects, relative to feature selection and the feature reliability problem.

An object can be described by a set of parametric primitives. Such primitives
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may be based on observation as well as knowledge about the object.

Typically in remote sensing the important primitives, for recognition of an

object, are spectral feature and/or contextual features. But since it is usually

presumed that the shape and size of natural objects in a scene (ground

cover types) are random and unrelated to the ground cover classes, these

features are often ignored in feature extraction and pattern recognition of the

ground cover types. However in this work, the objects' geographical features

are preserved in the spatial-feature-map and can be used by an appropriate

pattern recognition system, if it be necessary.

It is assumed that two adjacent objects differ in a measurable way relative to

the spectral or contextual features. In this system, a set of points representing

similar patterns are represented with the same features. Thus, the attributes

of P. can be refined by observation which are given by a set of three
I

parametric primitives:

Y. = (S r V i , Li )
I

where S. is the estimated within-object spectral feature representation, V., is
I

the estimated contextual feature, and L. is the spatial-feature-map or the
I

object geographical shape and location in the scene.

Let n. be the number of pixels in the object Pi and L. be the corresponding
I ' I

spatial-feature-map, then the object spectral feature S i is estimated by

averaging the spectral response of pixels within the object Pi (it seems

plausible to assume that a set of points representing similar patterns could

be represented with the same features)
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1
Si = __, Xk

IkE_

The intra-object spatial variation (contextual feature) is object-class

dependent [31] and can be used for object recognition. In this work the object

contextual feature is represented by the within-object spectral variation

vector, V.. The spectral variation vector is defined by the gradient of the pixel-
I

feature with respect to the spatial displacement in the spatial direction 6. Let

.th Rdui be the unit-vector in the direction of = axis in a space, the gradient of a

pixel-feature, XE P, is introduced by the following equation:

O_X1 O_X2 O_Xd

Va aa

Then the contextual feature, V i, is estimated by averaging the spectral

variation of pixels within the object P..
I

v_ 1  L_,V X kJ n.-1
I kE Li

Notice that the spatial direction 8 can be horizontal, vertical, diagonal, and

any other possible spatial direction. This averaging reduces the effects of

noise on the responses of a difference operator, V. The objects with small

area, whose number of pixels within the object is not sufficient for contextual

feature estimation, will be represented only by the spectral feature. This is

done by adjusting the degree of uncertainty in the feature extraction process:

the uncertainty about the feature is inversely dependent on the number of

pixels that are contained within the object P..
I
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In summary, an object can be represented by a set of three parametric

primitives (S i, V i , L i ). Although, the contextual feature is dependent on the

sensor resolution as well as the sensor altitude from the scene, the intra-

object spatial variation between adjacent pixels can be a significant factor for

on-line object extraction (see path-hypothesis in section 2.7). It is expected

that this mapping, from pixel-feature space into object-feature space should

generate a relevant feature set for scene representation. The performance of

an object-feature extraction process is measured in terms of the information-

bearing quality of the features versus the data set size.

By using the unsupervised object-feature extraction the scene is represented

in the feature space. Once each object-feature is classified, the membership

of pixels which belong to that object are determined simultaneously

regardless of their size and location in the scene. Classification accuracy is

an important quantitative measure of feature quality in the remote sensing

system. Feature quality can be measured in terms of:

overall misplacement error

the feature classification performance

subjective objects appearance.

The first and second measures are quantitative criteria which have

convenient mathematical forms, where the first one measures the number of

pixels assigned to the incorrect neighboring object (based on object class

type) relative to the total number of pixels in the scene. The second one
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measures the number of pixels classified into the correct class relative to the

total number of pixels in that particular class.

The subjective objects' appearance is an appropriate criterion when some

objects in the scene become more important than others regardless of the

size of the objects, or when the ground-truth-map for the first two evaluations

is not available. In such cases it is often too difficult to define a mathematical

expression for adequately quantifying feature quality. The visual assessment

will be used for this kind of qualification. The feature evaluation is performed

and explained in detail in chapter four.
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2.6 Object Detection and Unity Relation

An object consists of the union of pixels which have a unity relation with each

other. The unity relation is the important tool for construction of objects. This

is explained in this section. Intuitively, objects have two basic characteristics:

they exhibit an internal consistency, and they contrast with their

surroundings. Because of the irregularities due to the noise, the objects may

not exhibit these characteristics in an absolute sense. The ambiguity in the

object detection process can be reduced if the spatial dependencies, which

exist among the adjacent pixels, are intelligently incorporated into the

decision making process. In this work unity relation among the pixels of an

object is constructed with regard to the adjacency relation, the spectral-

features and the spatial-feature characteristics in an object.

Image data is represented by a two-dimensional rectangular array of pixels.

One of the important characteristics of such data is the special nature of the

dependence of the feature at a lattice point to that of its neighbors. The

unconditional correlation between two pixels in spatial proximity to one

another is often high, and such correlation usually decreases as the distance

between pixels increases. One way of characterizing this dependency

among the neighboring pixels is to represent it by a unity relation which

exists among the pixels of an object, meaning that an object consists of

contiguous pixels from a common class where their features are

statistically similar.

The keys to the unity relation among the pixels of an object are the adjacency

relation and the similarity criterion. Pixels from an object carry common

characteristic information about the scene, and since all information
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extraction processes are based on the patterns' feature comparison,

mathematically it can then be said that the unity relation exists between two

pixels X k and X r if and only if they satisfy two criteria simultaneously:

1) They have an adjacency relation with each other, in the sense

that they are spatially contiguous or their spatial distance is filled

by a sequence of contiguous pixels from the same class. The

subset of L (spatial-feature-map) whom their corresponding pixels

having an adjacency relation with the pixel X k is represented by

the set A k, called neighborhood set. The adjacency relation is

illustrated in chapter three.

They have the same attributes, or they carry equivalent useful

information about the scene, in the sense that their features are

similar to each other. This means that the distance between these

attributes, in an appropriate metric-space, is less than unity.

2)

O_s(Xr, Xk)<l

This metric (the similarity measure) is explained in detail in the next section;

in this section only the properties of a unity relation, regardless of the

selected metric, are investigated. Let 9_(.) be a relation on set P. When the

relation exists it is represented by 9_(.)=1, otherwise by _(.)=0.

The _(.) is a unity relation provided that _(.) satisfies the following

properties for all X k, X r, X h belonging to pixel-feature-set P:

i) Similarity and Adjacency Properties:

{ Ohs(Xk, Xr)<l and r_ A k } ¢:_ _'_(Xk, Xr)=l
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ii) Reflexive Property: _(X k, Xk)=l

iii) Symmetric Property _(X k, X r) -'= 9_(X r, Xk)

iv) Transitive Property: The unity relation has a transitive

property, that is, if the unity relation exists between Xk and X r ,

_'_(Xk, Xr)=l and at the same time it exists between Xh and X, r '

_'_(Xh, Xr)=l, that is sufficient for existence of the unity relation

between Xk and Xh , _(X k, Xh)=l- Since the unity relation

exists among the pixels in an object, we say that the unity

relation exists between each pixel of an object and

the object itself.

Notice that the unity relation is defined by a property between two individual

pixels in an object, but it is extended to the property between a pixel and an

object (based on the transitive properties). The unity relation properties are

very important tools for object extraction.

Proposition" The unity relation is said to exist between the pixel Xk

and the object P. if and only if for some X belonging to P. thei r i

relation 9_(X r, Xk)=l is true.

Proof of the sufficient condition: since X belongs to the object Pi ' the
r

unity relation exists between X and all other pixels from Pi; i.e.,r

_l_(Xr, Xh)=l for all XhE Pi

but _(X r, Xk)=l, and from the unity relation transitive property, this

implies that
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_'_(X k, Xh)=l for all XhE Pi

which it is equivalent to saying that the unity relation exists between

the pixel Xk and the object Pi ; thus Xk_ P..
I

Proof of necessity condition: if the unity relation exists between Xk

the object Pi' we should have

and

9_(X k, Xh)=l for all XhE Pi

But the set P.j is a finite closed set, and since XrE Pi' it is a

necessary condition to have

9_(X k, Xr)=l

We had pointed out that, the unity relation in the observation space is defined

by an adjacency relationship together with a similarity criterion among the

pixels' attributes. The similarity between the pixels' attributes is of basic

importance in attempting to test the existence of the unity relation. This is

evident since the existence of two adjacent objects is a consequence of the

dissimilarity of features from neighboring pixels where two adjacent objects

differ in at least one of the spectral or contextual features. But the accuracy of

the similarity measure is dependent on the selected metric space used for

functional construction and has an upper bound which is controlled by the

amount of noise in the system. The uncertainty in the similarity measure is

significantly reduced using the within object regularities (contextual feature).

This property is used in the path-hypothesis for unity relation construction. In

the next section the main concept of similarity measure based on path-

hypothesis is presented.
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2.7 Similarity Measure and Path Hypothesis

The principles for evaluation of the unity relation are:

a) the measure of similarity

b) membership in the same neighboring set, characterized by a

single concept (adjacency relation).

The traditional principle for comparing features utilizes some measure of

pattern similarity, which is the reciprocal of a distance measure.

To define a distance, we need a functional which maps all pairs of elements

from the set of features into the real line:

, R+oq'{X Y}-->

Such a functional is called a metric if it possesses the following properties:

Positive definite"

a(x,Y)>O

Symmetric:

Triangle inequality:

oq(X,Y)=0 ¢:_ X=Y

c3(X,Y)=c3(Y,X)

i)(X,Z) _<_)(X,Y) + o-)(Y,Z)

These requirements are merely formalized statements reflecting the intuitive

properties of a distance. The set of features P together with functional oh(.) is

called a metric space and is represented by a two-tuple (P, _)).
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An interesting class of metric spaces [38], which is called Minkowsky

Spaces or L p spaces, is obtain when a metric 03(.) is defined in a R d space

by the following formula
1

d

[.T_.(x,-
k=l

Another well-known metric space is called Chebyshev Space, which is

Rddefined in a space by the following equation

d

_c(X,Y) = Sup {ixk-YkI}
k=1

One can show that

O_c(X,Y) = lim Oqp(X,Y)
p---)oo

This shows that the Chebyshev space is a special case in the Minkowsky

spaces (03oo).The metric 031is called Diamond space, 032 is called Euclidean

space or sphere space, and 03oois called a square space (Fig.2.6).

X 3

,_
%%%%

r v_''_

Fig. 2.6 Equidistant surface 03(O,X)=r in the Minkowsky spaces (d=3)



44

In view of various definitions of metric spaces the question arises as to which

metric space can best explain the similarity and differences. For example, let

X be an unknown pixel and Y1 'Y2 ' Y3 be spectral feature-vectors of three

different neighboring objects. Figure 2.7 illustrates these feature-vectors in a

R d space (d=32) where the vertical axis shows the value of each elements,

x n, in the feature vector, and the horizontal axis shows the position of that

particular element in the feature vector.

x =[x1,x2,..., xo,..., x32]t

.il
0

1.5

I

X n

.5

Y,

I0 n 20 30

C

1.5

I

X

1 n 20 30

\ ,

0 10 n 20 30 0 10 n 20 30

Fig. 2.7 Which of YI' Y2' Y3 is more similar to X ?
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Let the decision rule for unity relation be the minimum distance criterion

between the spectral features (similarity measure). Then, table 2.1 gives

different answers for the existence of the unity relation among X and Y1 'Y2 '

Y3' where in the Diamond space YI' in the Euclidean space Y2' and in the

Chebyshev space Y3 is selected to have a unity relation with X.

Table 2.1 Distance between features

Distance

X from

in the Measure Space

Diamond Euclidean Chebyshev

oho(X,Y1) 2.56 0.54 0.18

Ohp(X,Y2) 2.62 0.52 0.13

o_p(X,Y3) 3.16 0.56 0.1 0

There is not any analytical approach to find the optimum metric space for

similarity measure in the general sense for multispectral image processing;

however, the superiority of the Diamond metric over the other metric spaces

can be determined experimentally [39,41]; also, notice that the following

property always holds for any pair of features (X,Y) in a R d space:

O_c(X,Y) = o_oo(X,Y) _< o_2(X,Y) _< O_l(X,Y )

Thus in this work we restrict the consideration to the metrics that measure the

similarity distance in the Diamond space.
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In order to characterize the unity relation among the pixels, consider pixel X k

and a neighbor, X. If they are sufficiently similar according to some suitable
r

should be merged to a single simple object Pi
measure, then X k and X r

otherwise they should be assigned to different objects. To implement this

scheme the definition of a suitable functional for measuring the distance is

necessary. Assume this functional exists and is defined by _s(.), such that if

Ohs(Xk, Xr)<l

we say that X k is similar to X r , then the unity relation exists between them,

which means X k and X r carry common characteristic information about the

scene, and locally belong to the same object Pi"

One disadvantage of the above approach is that it is quite local. There is

always uncertainty in applying a similarity measure to two adjacent pixels

(uncertainty is explained in appendix A at the end of this thesis). It is logical

that employing more pixels as evidence would tend to reduce this uncertainty

in distance measurement. On the other hand, increasing the amount of

evidence increases the complexity of the unsupervised process and possibly

the error of the feature extraction procedures [19,36].

It would seem that the optimum approach for designing the functional _)s(.) is

that it should be based on the totality of pixel features in that object, P.._Since

P. is not pre-determined and the features of Pi are unknown, a hypothesis we
I

shall refer to as the path hypothesis will be useful for on-line functional

assignment.
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Path Hypothesis: As pixels from an object are sequentially received, the

object accumulates in a fashion such that the object is increasingly well

defined. The path of sequential association which the pixels follow in the

spectral space form a continually evolving hypothesis regarding the

object definition. Segments in this path are determined on a spectral

basis relative to the then current status of all other adjacent objects by the

spectral variation between two consecutive points in the path using a

specific metric to be defined presently. Segments in the path are also

determined based upon the spectral separation between the current and

the most recently preceding pixel of that object in spatial space, thus

incorporating both spectral and spatial information in the association of

pixels with objects.

X 2

O

O

O

X
X 0
0 0

X

X X
0

0 X 0 X

0 x
O X

O X
oo X

¢

0 x: X
X

X 1

Fig. 2.8. Two adjacent objects in the observation space

Notice that the sequential nature of this hypothesis is significant. For

example, consider the hypothetical distribution of the points of two object in
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spectral space as shown in Fig.2.8. The path by which they might have

accumulated is illustrated in Fig.2.9 and is such as to explain how such an

overlapping class structure is feasible.

X 2

X 1

Fig. 2.9. Two objects are represented by the corresponding path-segments

Notice theoretically, there is only one specific path-segment, Pi' in the

spectral space defined by an object, and the path sequence cannot pass

through another portion of the observation space, Fig.2.9. The separation of

the two objects based upon the paths are made possible by the spatial

dependency in the path definition.

P.c_P.=_) for all i_=j
i I

In other words, the existence of a partition that completely separates objects

is substantially increased by the path-hypothesis; and also, non-adjacent
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objects which belong to the same class, but are spatially separated by the

other objects, have different path-segments and even might be nearly

identical in the observation space.

It should be realized that the path-segment P. is defined in the spectral
I

space and it is different from a spatial path in the scene. A path-segment P.
I

is represented by its spectral-feature Si, spectral variation regularity Vi, and

the path end point Xki.1.

The path hypothesis thus determines a possible sequence of points in the

observation space for each object, which implies that each object forms a

well-defined sequence in observation space, called the path-segment.

The succession of consecutive observations describes a particular trajectory

in the observation space. Any change in the behavior of two consecutive

points (the end point of the path-segment Xki_l and the current pixel Xk) in

this trajectory can define a start point of a new path-segment, i.e. the

detection of a new object follows that of the detection of the end of a path-

segment (Xki=O).

The sequential nature of this method and its on-line implementation cannot

wait for the complete trajectory for decision making about a small path-

segment. We thus propose to determine the apparition of a new path-

segment (new object) by n /2 past observations and n /2 following
w w

observations, which these observations supposed to represent the initial

intra-object rule. Then the process will continue based on the intra-object

rule until a new object be detected.
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In this work a functional for testing the unity relationship between the pixel-

and object-feature Y. based on the Ghassemi-distance in thefeature X r

Diamond space is introduced. Where the Ghassemi-distance is a metric that

normalize the spectral distance by their spectral gradient vector.

O_g (Yi' xr) = (I S i " Xr I)T(°r" V i + I_ Vn) -1

dR,

where o_- ' and
n.+d

I

d 2

13= n.+d
I

V. S i and n. are the same parameters as defined in section 2.5. As
I ' ' I

previously stated when the number of pixels within an object is not sufficient,

we incorporate V into the normalization factors. Where V is the spectral
n n

variation-vector built on nw/2 past observations and nw/2 following

observations (see also chapter three). The inverse of a vector, V 1, is defined

by the following relationship between their corresponding elements:

[vi', ....,v;,']'
Notice the functional is normalized and the distance is compared with unity,

i.e. this functional maps the pair of object-feature and pixel-feature into two

disjoint exclusive regions.

o_g(.).F x p __>[0,1 )u [1, oo)

The first region is the interval [0, 1) with the property that any pair that have

been mapped into this interval satisfies the similarity criterion. The second

region is [0, oo) that indicates the unity relation test is failed.
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2.8 Object-Feature Extraction

In this work we restrict consideration to a case in which all pixels making up

an object have quantitative and conceptual similar attributes. It is assumed

that two adjacent objects differ in a measurable way relative to the spectral or

contextual features, based on the Ghassemi-distance. Each object is

represented by a set of three parametric primitives (S r V i , L i ), which are

explained in section 2.5 in this chapter.

Based on the path-hypothesis, the data read sequentially into the system. A

present pixel is compare with its adjacent objects (path-segments in the

observation space) for the unity relation test. If the distance between pixel-

feature Xk and object-feature Y._is less than unity , O_g(Yi, Xk)<l , then this pixel

will be annexed to this object, and the object-feature will be updated. This

comparison will be done for other possible adjacent objects, and if there is

another object which has a unity relation with the pixel, then this object and

the former one will be merged. If there is no adjacent object to have the unity

relation with the pixel, then this pixel will be a singular object. This procedure

is illustrated in chapter three.

Let Xr be the feature of an unknown pixel P[i,i] which has a neighboring set A..i

And let Y. be the object-feature estimated from P.. If X has the unity relation
I I r

with the path-segment P:
I

%(YrXr) <1 and reA., <=_ _(Pi'Xr) =1

this implies that Xr belongs to the object Pi ; hence, the index k should annex

to L. "Pi' and Xr can be represented by the same feature Yo. In practice the
I J I
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object Pi and the pixel X are merge to P. in the feature space simultaneouslyr i

with the object detection process.

The pixel annexation process, P.=P.UX in the observation space isI I r ,

equivalent with the object-feature updating. As it had been pointed out in the

section 2.5 in this chapter, an object is represented by a set of three

parametric primitives Y. = (S i, V i , L i ). Thus, the object-feature updating can
I

be performed by the following computations:

n.S + X.
S.- i i i
, n.+l

I

V,

I

n.Y. + I Xk - Xk+1 II I

n.+l
I

L=LUk
I I

After object-feature extraction, the next step is to measure the feature

reliability in feature space (these two steps occurring simultaneously in this

case). This process tests the object validity and fusion (merging) tendency of

the object in feature space. The object may be merged consistent with the

objects' features in feature space.

For a fusion tendency test, the transitive property of the unity relation is used.

Two objects in the feature space can be merged if they have the unity

relation.

Lemma" If a single pixel has a unity relation with two different objects

simultaneously, then both objects have a unity relation with
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each other, they have a fusion tendency, and they should

merge to a single object.

Proof: Let X be the pixel that has the unity relation with the objects P
r i

and P. simultaneously. Then, the following relations hold
J

simultaneously"

_'_(X r, Xk)=l for all XkE Pi ; and 9_(Xr, Xh)--1 for all XhE P.
J

by the unity relation transitive property. This implies that

9_(X r, Xh)=l for all XhE PUP
i j

This implies that X belongs to both objects P and P.
r i j

simultaneously, or belong to a new object, PI' which is the

union of the objects P. and P including the pixel X itself
i j r

PI=PiUPjUXr

In practice the objects P. and P. are merged to Pj in the feature spacei j

simultaneously with the object detection process, where it is equivalent with

object-feature updating in the feature space. Where object-feature updating

are performed by the following computations (see section 2.4):

LI=LiULjU r

S I =

n.S + n.S. + X r
I I J J

n.+ n.+1
t j

V I =

n.Y. + n.Y. +IX, I= = I J -Xr-1

n.+n.+1
i j
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Since during the object detection the information of the pixel-features is

compacted into the object-features, the fusion tendency test depends only on

the object-features; e.g., Y. and Y.. Thus this operation is very fast and is
i J

equivalent with the processing of a single pixel, as measured by the

computation time required.

2.9 Summary

A scene can be represented by features of spatially disjoint objects, rather

than the pixels' features. The pixels of an object have a unity relationship,

which can be realized by a path hypothesis by means of an efficient

functional O_g(.).This functional tests the unity relation between pixels. Based

on such a scheme, an object is realized as a path-segment in the

observation space Pi' where the path's elements, Pi={Xli,X2i , ... Xni}, carry

equivalent useful information about the scene. The sequential nature of the

method let the process implemented on-line. Each path-segment is

represented by a relevant object-feature set Yi=_V(Pi ) in the feature-space.

Finally, the set of object-features F={Y 1, Y2' ""' Yno}' rather than pixel-features

set P=PIUP2U ... UP no' is used for data transmission and for the

classification process as well. The next chapter explains the object detection

and feature extraction algorithm.

Let P_=_Fbe the basic relation between observation space and feature space.

Then P__Y. implies that: Y. represent equivalent useful information about the
I I I

scene to that the object P.. Once each object-feature, Yi ' is classified, the
I
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memberships of pixels which belong to the corresponding object are

determined simultaneously, regardless of the pixels' location in the scene.

The spectral information of surrounding pixels is correlated with the

corresponding pixel. This dependency appears in the form of contextual

features that are incorporated in the object feature extraction. Because both

contextual and spectral features are used in the feature extraction process,

one might expect classification accuracy to be higher in object-feature

classification using the object-feature rather than pixel by pixel classification,

using the pixel-feature. In other words, it is more likely that the classification

of ground cover fields in the feature space based on the object-feature can

be more accurate and efficient than the pixel by pixel classification in the

original pixel-features. Since the classification process is performed in the

feature space rather than in the observation space, the algorithm has the

potential to be faster than a conventional one. This results from the fact that

the size of the object-feature-set is much smaller than the size of the pixel-

feature-set. The performance of object-features is presented in chapter four.
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ON-LINE

CHAPTER 3

UNSUPERVISED OBJECT-FEATURE

ALGORITHM

EXTRACTION

3.1 Introduction

As has been pointed out, the reduction in complexity and costs associated

with the analysis of multispectral image data, data transmission, storage,

archival and distribution is an important task of on-line unsupervised object-

feature extraction. The ambiguity in the object detection process can be

reduced if the spatial dependencies, which exist among the adjacent pixels,

are intelligently incorporated into the decision making process.

AMICA uses unity relation for object detection. In this work, the unity relation

among the pixels of an object is constructed with regard to the: adjacency

relation, spectral-feature and spatial-feature characteristics in an object; i.e.

AMICA uses the within object pixel-feature gradient vector as a valuable

contextual information to construct the object's features, which preserve the

class separability information within the data.

Based on the path-hypothesis the data read sequentially into the system and

the unity relation between a current pixel and the path-segments (objects in

the observation space) will be examined. This pixel may then be merged into
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an appropriate object or it may initiate a new object. As explained in section

2.5, an object will be represented by the object-feature set.

Typically the performance of an object-feature extraction algorithm is

measured by the performance of the object-features with respect to the pixel-

features, as well as by its implementation complexity. The complexity of

object-feature extraction algorithm is a particularly important consideration in

the hardware implementation and required computation time. The

performance of object-feature is presented in the chapter four.

In this chapter we focus on the reduction in complexity of AMICA with no

degradation in the accuracy of the process. This is a challenging and

sophisticated task especially when it is to be implemented on-line.

AMICA consists of four distinct activities, Fig.3.1 :

_

2-

3-

4-

functional estimation

unity relation test

feature extraction and feature reliability test

feature transmission

All of these activities can be performed and implemented by AMICA as

explained in the previous chapter. In this chapter we try to optimize

performance of the AMICA, in the sense of CPU time and memory

requirements for implementing the feature extraction process. This can be

achieved by optimization of the number of past and following observations,

n w, for initiation of a new object, as explained in section 2.7, to minimize the

required memory. Also, it can be achieved by redundancy reduction in the



58

number of unity relation and feature

computation time for decision making.

reliability tests, to minimize the

Functional

Esti mation

Unity
Relation Check

Feature Extraction
and

Feature

Relevancy Check

Fig. 3.1. Real-time object-feature extraction activities
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In the next section we introduce the necessity of an assignment of a window

for removal of the feature extraction dependence on the scanning direction

which may occur in the case of initiation of a new object. Then section three

will explain how one can reduce the number of operations per node for the

unity relation and feature reliability test, by using the unity relation properties.

Finally, section four explains the algorithm procedure and the flow chart of an

optimized AMICA.

3.2 Optimal Window Size Assignment

To apply the unity relationship test to a pixel we must first estimate the within-

object spatial parameters, V r The estimated parameters are used to

generate a normalized metric (functional) for evaluation of unity relation

within each object. It is assumed that the object is large enough to obtain a

reliable estimate of the model parameters. The object is assumed "large" with

respect to the "d" dimensionality. To estimate the parameters at each point

we proceed as follows. Suppose the spatial parameters evolve slowly over

each object. As pointed out in the previous chapter, because of the

sequential nature of AMICA and its on-line implementation the system cannot

wait for the complete trajectory for decision making about a small path-

segment. Thus, generally there are two cases that should be considered for

functional assignment and feature selection (see section 2.5):

1) In the first case, the number of pixels within the object is sufficient for

contextual feature extraction. In this case the object will be represented
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by both spectral and contextual features, and the dominant factor to

normalize the functional is the Vi extracted within the object P,

I  Vax kVi- n.-1
I k_ Li

2) In the second case, the object is small, or the number of pixels within the

object is not sufficient for contextual feature extraction. In this case the

object will be represented only by the spectral features, and we

determine the validity of a new path-segment (new object) by nw/2 past

observations and n /2 following observations accomplished within a
w

window. These observations are presumed to represent the initial intra-

object characteristic. In this case the dominant factor to normalize the

functional is the V extracted within an appropriate window.
n

Vnn
nw-

n W

2

1 _ _,3 xk-K
- r'lw

2

In this work the spatial direction 5 is defined to be in all of three horizontal h,

vertical v, and diagonal vh spatial directions (see appendix C). In the second

case there is a potential problem with the feature extraction (if Vn is not

incorporated into the functional); that is, the object-feature inherent

dependence on the order in which pixels and the small objects (if there is

some) are examined for unity relation. Figure 3.2 illustrates eight of the

possible ways that data can be read into the system.
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F]Nrq
left-right,top-down

DDD
right-left, top-down

E]

Pq

fqF1
top-down, left-right

mE]

Fq

D
bottom-up, left-right

FqNfq

right-left, bottom-up

E]NFq

left-right, bottom-up

@

E]

D£1
top-down, right-left

N

F]
bottom-up, right-left

Fig. 3.2. Eight possible scanning directions for reading data into the system
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Thus there are eight approaches that a pixel can be examined with the

adjacent small objects (if there is some) sequentially. For example, a left-

right, top-down scan may not yield the same initial objects extraction as a

right-left, bottom-up scan does. In other words, on-line object detection

outcome is dependent on scanning direction when the objects are small.

The unity relation based on the path-hypothesis provides that the scanning

direction dependency can be minimized by selection of an efficient window

size, nw, and appropriate position for the window, Fig. 3.3. This dependency

can be significantly reduced by measuring the feature reliability among the

adjacent objects.

Width of window

A

Height
of

window

P

Fig. 3.3. Position of the pixel in the window for functional estimation
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Now, the detection of a new object is built upon the nw/2 past observations

and nw/2 following observations. In this way the scanning direction

dependency is minimized; objects will be grown until the number of pixels

within an object is sufficient for contextual feature estimation. Then the local

spectral gradient will be the important factor for functional assignment. As it

is shown in chapter two, in practice, object growth will be accomplished by

adjustment of the coefficients o_ and 13in the functional.

C_g (Yi' X,) = (I xr I)T(_ Vi + i] Vn)-I

The memory requirement and CPU time for functional assignment are

proportional to the size of window, nw. Since the data is read into the system

line by line, we try to minimize the number of lines per window to optimize the

CPU time and storage for functional normalization. On the other hand,

reduction in the number of lines in the window, n I, increases scanning

direction dependence, which reduces the quality and performance of the

object-features.

In an experiment several types of multispectral image data (see chapter four)

are used. As a criterion for evaluation of the effect of the window size, the

performance of the object-features versus the original pixel-features is

presented. Figure 3.4 illustrates the effect of the window size on

performance of the object-features where the performance is represented by

the percentage of correct feature classification.
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In this figure the width of the window is fixed and is equal to the number of

pixels in each scan-line, nx, thus the height of window, n I (number of lines in

the window), is used as the reference for window size.

100

97

._o

'- 94

91
t.--
8

88

85

object-feature

_. original pixel-feature

A A A A A

• " I " " I " " I " " I " " I " " J " " I " " I " " I "

2 5 8 1 1 1 4 1 7 20 23 26 29 32

height of window (hi)

Fig. 3.4. Effect of window size on the feature performance

The results of this experiment show that, for the data set used, if the width of

the window be equal to n or greater than 64, practically, the optimum height
x

for the window is eight or ten lines per window.
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3.3 Reducing the Unity Relation and Feature Reliability Tests

The multispectral image data are read into the system sequentially in the

raster scan oriented format, where each pixel can have at most eight

adjacent neighboring objects. Let p be a pixe! under consideration and On,,

O, 0, ..., 0, 0 be the eight adjacent neighbors of the pixel p, Fig.3.5. If the

the unity relation exists between the pixel and any of those objects, the pixel-

feature will be combined (feature fusion) with the corresponding object-

feature, and the pixel location will be annexed to the spatial-feature-map.

Fig. 3.5. Eight adjacent neighboring objects
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As it is explained in chapter two, pixel p is represented numerically by the

vector X,, and its eight adjacent neighbors O w, O, On°, ..., O° can be

represented by corresponding path-segments Pk,, P,2, P,3 ,"" , P,8, or by

their features Y,, , Yk2, Y,3 ..... Y.8 respectively. Notice as pointed out in

section 2.7, in practice a path-segment P.,is represented only by its spectral

feature S.f , spatial feature V,j, and its end point X,._.AMICA tests for the

existence of the unity relation between Xk and its eight neighbors.

Simultaneously the system measures the feature reliability of the eight

neighboring objects and tests for shrinkage tendency and for all possible

combinations between the eight neighboring objects' features. In other

words, given a pixel X, in the observation space, regardless of the existence

of the unity relation, AMICA should test for feature reliability and any other

possibility of existence of the unity relation among X, and P,,, P,2, P.3 ,--', Pk8

For example, if the unity relation exists between X, and P,2 , after

annexation of p to On in the feature space (connection of X, to the path-

segment P.2) the algorithm should continue for testing the existence of the

unity relation and shrinkage tendency between Pk2 and other neighboring

features and continue measuring the object-feature reliability.

For any incoming pixel observations, X,, there are 256=28 possible cases in

the observation-space that the algorithm should check for unity relation and

feature reliability: C 8 cases if all of the 8 neighbors belong to 8 different
1

classes, C 8 cases if all of the 8 neighbors are from only 7 different classes,
2

8

0 8 4cases if all of the 8 neighbors belong to only 6 different classes, C
3

8

cases if all of the 8 neighbors belong to only 5 different classes, C cases if
5

all of the 8 neighbors belong to only 4 different classes, C 8 cases if all of the
6
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8

8 neighbors belong to only 3 different classes, C
7

8

neighbors belong to only 2 different classes and C
8

neighbors are from the class, where:

cases if all of the 8

case if all of the 8

The symmetric property of the unity relation provides for AMICA to reduce the

number of check points per each pixel by using only the first four adjacent

neighboring objects, Fig.3.6, instead of eight adjacent neighboring objects.

Fig. 3.6. Four adjacent neighboring objects

Proposition 1: Based on the unity relation properties, the results of AMICA,

using the first four adjacent neighboring objects, are equivalent to the results
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of AMICA, using eight adjacent neighboring objects when the input data is

read by of the system sequentially in the raster scan oriented format.

Proof: Assume that AMICA checks the unity relation and feature reliability

only among Xk , P,,. Pk2, P,3. and Pk,. and then starts repeating the same

procedure among X, P,,, Pr2' P,3 and P,, where X is the first East adjacent

pixel to X,. But in this new coordinate, Y, is the same as Yk2, and Y,2 is the

same as Y_, also Y, is equivalent to X, in the feature space. This implies that,

mathematically, AMICA will check the unity relation and feature reliability for

Y,s in the next incoming pixel X, and since the unity relation is transitive and

symmetric, the outcome will be the same as when Xk and Yks are considered

together for the unity relation and feature reliability test.

The same situation exists for P,,. P,7 and Pk. in the sequence of the next line

scan, where the unity relation and feature reliability of at least one pixel from

each of these path-segments (P,e, Pk7. Pk8 ) with Xk will be checked in the

feature space, in other words, since the unity relation is symmetric.

mathematically the last four adjacent neighbors of X, (P,s, P,_. P,7 and P,. )

will be considered in the next incoming pixel data and the next sequence of

scan line data. This approach for testing the unity relation is much easier to

implement because there are fewer objects to compare simultaneously and

fewer object-features to be tested for feature reliability.

Using the first four-adjacent neighbors, AMICA should still check 16=24

possible cases per each pixel for existence of the unity relation and feature

reliability in the feature-space.
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Proposition 2: For any given pixel X,, the unity relation and feature

reliability test is redundant for all of the cases in which two of the neighboring

objects have an adjacency relation: [Yk,, Y.2 ], [Y,, ,Yk. ], [Yk2, Y_ ], [Y,2, Y,. ],

[Yk,, Y,2, Y,3], [Yk,, Y,2, Y,. ], [Y_, Yk3, Y_,], [Yk,, Y,3, Y_ ] and [Y,,, Y,2 ,Y_, Y,.].

In other words, the only relevant cases that should be considered by AMICA

for unity relation and feature reliability test, among Xk and its adjacent

neighboring objects, are: [Pk, ], [Pk,, Pk3], [Pk2], [Pk3], [Pk3, Pk. ] and [P., ].

Proof: Among the eight neighboring objects of X. , for any two adjacent

objects there exist at least one pixel at their boundary, Xb , that has an

adjacency relation with X,. Using the first four adjacent neighbors, the pixel

Xb has been checked for the unity relation sequentially before pixel X, , and

since X. and Xb are adjacent, the transitive property of the unity relation

provides us that checking for the unity relation and feature reliability for those

adjacent objects is redundant, where

_(X k, Xb)=l _ _'_(X k, Pi)=l for any be L i

Therefore, the unity relation properties provide that an efficient algorithm for

each pixel should check at most the first four neighboring objects, and, as

shown in the previous proposition, there are only two possible cases,

[Y,,, Y,3] and [Y,3,Y.. ], that feature reliability of object-feature need to be

checked. These two cases are the same as those for which the shrinkage

tendency among four neighboring objects should be checked, [P,,, P.3 ] and

[P., P., ].
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Based on path hypothesis and the unity relation properties at each node

there is only one of the following cases that two objects can merge together.

In the first case Xk has a unity relation with Pk, and Pk3 simultaneously. Then

both objects should be represented by a single feature. Figure 3.7. illustrates

this activity in the feature map. The features will be updated as it is explained

in chapter three. The second case for merging two objects occurs when X,

has a unity relation with P,, and Pk3 simultaneously. Then the feature map

should be updated, as it is illustrated in the Figure 3.8, and both objects will

be represented by the same object-feature.



71

i!i!!iiii!iiiii

Fig. 3.7. The first possible case for merging two objects in the spatial-feature-
map
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3.4 AMICA Explanation

The flow chart of AMICA is illustrated in figure 3.9. The multispectral image

data is read into the system in the left-right, top-down raster scan format. To

begin the process the local pixel-feature gradient is estimated and

normalized within the window. After a start period, the window is shifted such

that the pixel under consideration is always in the middle line of the window.

An unknown pixel P[i,j] is compared with its four adjacent objects by testing

the unity relation between the pixel-feature Xk and corresponding path-

segments (PE1 ' PE2 ' PE3 ' PE4)" If the unity relation exists then the pixel will

be connected to the corresponding path-segment. If more than one path-

segment were selected then the corresponding objects will be merged

(Pi=PE1UPE3 or Pi=PE3UPk4 ). If the unity relation does not exist among any of

those four adjacent path-segments compared with Xk, then Xk will be

initialized as a new path-segment, Pi=Xk . After each decision making and

feature reliability check, the features of the corresponding object (Yi) will be

updated.

The boundary of object (in the spatial-feature-map) is checked for closeness,

and then the feature of the closed object will be transmitted to the earth-

station. At each node, for unity relation and feature reliability test, the system

needs only the information about the adjacent objects, and the coefficients of

the functional are necessary only for the open objects. This implies that the

compaction system required only information about the open objects in the

last two lines.
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Thus, the system should store at most only 2n object-features. When the
×

object is closed and its feature transmitted, the corresponding buffers for

functional assignment will be reset and ready for a new coefficients

assignment. In chapter four, results of implementation of AMICA to the real

data are presented.

In summary AMICA consists of four main activities:

. functional assignment" the coefficients for functional normalization

are measured statistically within the window W, where Xk belongs to the

middle line in this window (see page 51 and 64).

_

unity relation check: Given any pixel Xk the unity relation between Xk

and all four adjacent neighboring objects, Pkl ' Pk2 ' Pk3 and Pk4 are

checked and Xk will be assigned to appropriate path-segment, P..
I

_ feature extraction and feature reliability test: the spectral and

contextual feature of an object will be extracted and the feature

reliability will be measured by using unity relation properties, where two

objects may be merged and will be represented by the same object-

feature in the feature space.

_ feature transmission" by using the feature map, the boundary of each

object is checked. Any time that AMICA finds that the boundary of an

object is closed, the features of the corresponding object will be

transmitted to the earth-station.
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CHAPTER 4

FEATURE EVALUATION

4.1 Introduction

The objective of this chapter is to demonstrate the validity of the unity relation

and path-hypothesis for on line unsupervised object-feature extraction and to

show that performance of the object-features is better than the pixel-features.

The performance of a feature extraction process is measured in terms of the

information-bearing quality of the features versus the size of the data set.

Classification accuracy is an important quantitative measure of feature quality

in applications where the data is automatically interpreted (e.g., remotely

sensed image data). However, classification accuracy is dependent on the

classification algorithm as well as the feature extraction technique, and often

significant accuracy improvements can be obtained by tailoring the

classification algorithm to the specific feature extraction technique. Therefore,

it is important to investigate jointly feature-extraction and classification when

the feature quality (relevancy of the features for scene representation) is

based on classification accuracy.

In this chapter several real image data sets are used to provide comparative

performance results for the various feature configurations between the

original pixel-features Xk and compacted object-features Yi The features'
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reliability and quality are measured in terms of overall misplacement error in

the scene (OME), feature classification performance (FCP), and subjective

objects appearance (SOA). The same training samples and decision rule are

used for each comparison, Fig. 4.1.

Data Set

J Compaction

I

X
k

I Classification _ ' =J Classification J

v

Comparison

1- OME criterion

2- FCP criterion

3- SOA criterion

Fig. 4.1 Feature reliability evaluation
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The first evaluation is a simple quantitative criterion which has a convenient

mathematical form to measure the number of pixels assigned to an incorrect

neighboring object based on the object classification, relative to the total

number of pixels in the scene (overall misplacement error). Let GTM={r1,r2,...,

rnt} represent the ground-truth-map of the original data, and let CPM={c1,c2,...,

Cnt} represent the classification-pixel-map result of feature classification. Then

the overall misplacement error can be computed by comparison of the CPM

and the GTM:
am

OME = 100 n_-

where n m is the total number of pixels misplaced into incorrect neighboring

objects (based on the object class), and nt is the total number of pixels in the

scene. The first features' evaluator, also, measures the quality of object's

spatial shape and boundary accuracy in terms of overall misplacement error.

The OME is not generally meaningful for measuring the features quality in an

absolute sense. For example, it would not usually be useful for comparing

feature quality across different feature selections. However, the OME can be

very useful for comparing the performance of the options (e.g. window size)

of the feature extraction technique on the same multispectral image data

using the same classification algorithm with the same training sample sets.

The feature classification performance (FOP) measures the number of pixels

classified into the correct class relative to the total number of pixels in that

particular class. This criterion is used to evaluate the object-feature

performance when the effects of classifier decision rule and training samples

on the class feature performance should be considered.
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Good ground truth information is a very important parameter in feature

evaluation to minimize the unrelated error in the feature extraction. However,

obtaining a valid ground-truth-map (GTM) and registering the multispectral

image data with this map is often costly and very time consuming. Thus,

among the available real data those subsets which have a relatively reliable

ground-truth-map should be selected and used for the OME and FCP feature

evaluations.

The subjective appearance is an appropriate criterion when the ground-truth-

map is not accurate enough to be used by other feature evaluators, or when

some objects in the scene are more important than the others regardless of

the size of the objects. In such cases it is often too difficult to define a

mathematical expression for a feature quality adequate for quantitative

evaluation. In tis case visual assessment will be used for this kind of

qualification. This criterion is used to evaluate the spatial quality of the

spatial-feature-map, for prediction of more information about the scene, by

using more complex features, which should be extracted from the training

samples. In other words, by incorporating the object appearance in the

spatial-feature-map into the feature selection strategy, more complex objects

in the scene can be detected. For example some significant within-class

variation shows that more information about the complex objects (perhaps

soil type covered by vegetation) in the scene might be extracted by using

even more complex features.

In this chapter after an introduction to classification decision rules in section

4.2, the experimental results will be presented in section 4.3.
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4.2 Classification

Classification is the procedure most often used for quantitative analysis of

remote sensing image data. It rests upon using suitable algorithms to label

the pixels (or objects) in the scene as representing particular ground cover

types, or classes. In classification of the compacted image data, once each

object-feature is classified, the memberships of pixels which belong to the

corresponding object are determined simultaneously regardless of their size

and location in the scene. Irrespective of the classification algorithm, this

procedure consists of the following essential practical steps [32]:

Choose representative or prototype pixels from each of the desired

set of classes (for example water, urban regions, cropland,

rangelands, etc.). These pixels form a training set. Training sets for

each class can be established using site visits, maps, air

photographs or even photointerpretation of a color composite

product formed from the image data. Often the training pixels for a

given class will lie in a common region enclosed in a border; that

region is then called a training field (the contiguous training fields

are used for within class context parameters estimation).

Use the training data to estimate the parameters of the particular

classifier algorithm to be used; these parameters will be the

properties of the probability model used, or will be the equation that

defines partitions in the multispectral space. The set of parameters

for a given class is called the class-feature set of that class.
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Using the trained classifier, label or classify every pixel (or object) in

the scene into one of the desired ground cover types (information

classes). Here the whole scene segment of interest is typically

classified.

Produce tabular summaries or thematic (class) maps which

summarize the results of the classification.

In this chapter, to evaluate object-feature reliability two different classifiers

are considered" the Maximum Likelihood classifier and the Minimum

Distance classifier [4].

4.2.1 Maximum Likelihood Decision Rule

Maximum likelihood classification is the most common supervised

classification method used with remote sensing image data; this is developed

in the following in a statistically acceptable manner [11]. Let the ground cover

classes for a scene be represented by: e)i , i = 1, 2, ..., m, where m is the total

number of desired classes in the scene. Suppose that sufficient training data

is available for each ground cover type. This can be used to estimate a

probability distribution for ground cover type that describes the likelihood of

finding a feature from class 0.) i , at the position of X. The maximum likelihood

decision rule decides that X belongs to coi if and only if

p(xl i)p(coi)>p(xl j)p( j) for all j_i

where p(Xl(oj) is the class o). probability density function evaluated at X andI

p((0j) (so-called a-priori probability of class e)j) is the probability that class (.0j
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occurs in the scene. Computational convenience results in definition of the

discriminant function gi(X) [11]

gi(X) = In{p(Xlo)i)P(O)i)} = In{p(xl_i)}+ln{p(ei)}

where In is the natural logarithm, so the maximum likelihood decision rule

becomes

i 4=>g/x)>g/x) for all j_=i

A very common classification approach in multispectral image data

application is the maximum likelihood Gaussian parametric classifier on a

per vector basis. This classifier is often used because of its relatively simple

implementation, especially when the spectral features are the only features

that are used for object representation. Then the discriminant function for

maximum likelihood classification, based upon the assumption of Gaussian

distribution, is:

gi(x) = In{p(c°i)} - °.51nlT--,il- 0"5(X'Mi )t _'i1 (X_Mi)

where M. and _'i are the mean vector and covariance matrix of the data inI

class coi, which is estimated from the training samples. Let n i samples be from

class coi, then the mean and covariance of the each class are estimated by

the following equations:

ni

1
M i = _ ,'_ Xk

I k=l

1
_"i- n.-1

I

n i

"_( Xk" Mi )( Xk - Mi )t
k=l
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Often the analyst has no useful information about the p((oi). In this case a

situation of equal prior probabilities is assumed. As a result In{p(o)i) } can be

removed from the discriminant function, since it is the same for i=1,2, ..., m. In

that case the 0.5 common factor can also be removed. Thus the discriminant

function can be simplified into:

-1
g (x) = -InlY_, l-(X-Mi)t _'i (X-Mi)

Sufficient training samples for each ground cover class must be available to

allow reasonable estimates of the elements of the mean vector and the

covariance matrix to be determined. For a d dimensional multispectral space

at least d+l samples are required to avoid the covariance matrix being

singular. Apart from this condition it is clearly important to have as many

training pixels as possible, particularly as the dimensionality of feature space

increases, since in higher dimensional spaces there is an increased chance

of having some individual dimensions poorly represented [19]. Swain [4]

recommends as a practical minimum that 10d samples per class be obtained

for training, with 100d as being highly desirable, if it can be attained.

The effectiveness of maximum likelihood classification depends upon a

reasonably accurate estimation of the mean vector M and the covariance

matrix Y_,for each spectral class. This in turn is dependent upon having a

sufficient number of training pixels for each of those classes. In cases where

this is not so, inaccurate estimates of elements of )-'. results, leading to poor

classification. When the number of training samples per class is limited it can

be more effective to resort to a classifier that does not make use of

covariance information.
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4.2.2 Minimum Distance Decision Rule

When the number of training samples per class is limited to have a

reasonably accurate estimation of the covariance matrix ,T_,for each spectral

class, the minimum distance (M.D.) classifier [11], is an alternative which to

solves the problem of the M.L. Gaussian classifier. Also M.D. classifier can

be useful when the other object's parameters such as contextual features

(local spectral gradient) together with the spectral feature are used for data

classification.

The assignment of an unknown pixel to a class is based on the minimum

distance decision rule, where the degree of assignment of pixel to each

object would depend on the relative distance between the object-feature and

each class-feature, estimated from the training samples [11,40]. With M.D.

classifier, training data is used only to determine class-features [32]:

Classification is then performed by placing an object-feature (or

pixel-feature) in the class of the nearest class-feature. Let Y be an

unknown feature and ai(Y ) be such a distance from class-feature of co.,then:

Ye0) i <=_ O_,(Y)<O_j(Y) for all j_:i

As it was explained in chapter two, an object-feature can be represented by a

is the spectral vector, V is the within objectthree-tuple (Sy, Vy, Ly ), where Sy y

gradient vector, L is the spatial-feature-map, and n will be the number of
Y Y

pixels in the object. Let n. be the number of pixels within the training field (Li)I

used for class-feature estimation from class o).. Then the class-feature of (o.
I I
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can be represented by three parameters (S i , V i , ni ) where S i is the estimated

class spectral vector and V. is the estimated within class gradient vector.
I

To incorporate the within-class contextual information into the minimum

distance classifier decision rule, a discriminant function based on a new

distance is defined, where in L p space [38] the general form of this minimum

distance classifier is defined by the following equation:

OqP(y) _ t -1 gi= ( S i Sy)p ( giVi + gyVy) + In( vy )

The coefficients gi and gy are defined by:

ni and gy ny
gi- n i + ny -"n._ + ny

Again S and V are d-dimensional vectors and g is a scalar, In is the natural

logarithm, and the superscript "t" represents that the vector is transposed. The

subscript "p" denotes that the distance is measured in the Lp space. The

operation ® between two vectors V 1 and V2 is defined by:

V 1 ® V 2 = ]"-[ Vlk V2k

k=l

where the scalars v,k and vz, are elements of vectors V 1 and V2 respectively.

The power "p" of a vector is defined by the following relationship between

their corresponding elements:
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. ..P
P

Vl Vl

p
V 2 V 2

Vd .Vdp"

Then the inverse of a vector based on the above definition is unique, where:

V -1V® =1

This minimum distance classifier may be attractive (specially when the CPU

time for classification of data be a significant parameter) since it is a faster

technique than the maximum likelihood classification: the speed of this

classifier is order O(d), however the speed of the M.L. Gaussian decision rule

is of order O(d2). In the maximum likelihood classification each class is

modeled by a multivariate normal class model; however, the Gaussian

assumption is not used in this minimum distance technique. Notice that

though several ground cover classes can be classified by this M.D. classifier,

it might be more suitable to use the M.L. classifier (the M.L. classifier is

usually more accurate than the M.D. classifier).

In the next section the experimental test results are presented, where both

decision rules ( the Maximum Likelihood Gaussian classifier and the

Minimum Distance classifier) are used for feature classification.
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4.3 Experimental Results

In this section the proposed feature extraction technique is applied to several

set of image data. As previously stated, the objective of these experiment is

to demonstrate the validity of the unity relationship and the path-hypothesis,

and to show that the performance of object-feature is better than the

performance of pixel-feature regardless of the choice of classification

decision rule and the training set.

The original of the first MSS data set (called Flight-line 210) is contained on

LARS tape number 165, file number 1, rune number 71053900. This file

contains Indiana agricultural data. The data has 12 spectral bands (0.46 Ilm

to 11.70 l_m, Table 4.1) and was collected by the University of Michigan

Scanner. Corn Blight Watch Flight-line 210 was overflown at about noon on

August 13, 1971 from an altitude of 5,000 feet. The area covered was a

1.4x9.7 mile strip of farmland. There were 228 samples/scan line and 1161

scan lines for a total of 264,708 pixels.

Table 4.1 Flight-line 210 spectral bands

Channel Spectral
1 0.46
2 0.48
3 0.50
4 0.52
5 0.54
6 0.58
7 0.61
8 0.72

lO
11
12

- 0.51

- 0.54
- 0.57
- 0.60

'- O.65
- 0.70
- 0.92

1.00- 1.40
1.50- 1.80
2.00 - 2.60

9.30 - 11.70
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The original of the second MSS data set (called Flight-line C-1) was

obtained from the sampled and quantized output of a 12-channel (0.40 l_m to

1.00 _m, Table 4.2) airborne scanner flown over predominantly agricultural

regions in Indiana. Flight-line C-1 was obtained on 28 June, 1966 at 12:30

P.M. The area covered was approximately 4 miles long and 1 mile wide of

farmland. There were 228 samples/scan line and 950 scan lines for a total of

216,600 pixels.

Table 4.2 Flight line C-1 spectral bands

Charinel Spectral 'Bandl I_m
1 0.40 - 0.44

0.462 0.44 -

3 0.46 - 0.48

4 0.48 - 0.50

5 0.50 - 0.52

6 0.52 - 0.55

7 0.55 - 0.58

8 0.58 - 0.62
0.62 - 0.66

0.66 - 0.72
9

10

11 0.72 - 0.80

1 2 0.80 - 1.00

The third MSS data set has 7-channel spectral bands (three visible spectral

bands and four infrared spectral bands) which have been obtained from an

urban area and includes the O'Hare Airport. This area has 256

samples/scan line and 256 scan lines for a total of 65,536 pixels.

In addition, three single-band images with different complexity are used for

evaluation of feature extraction process by spatial-feature-map comparison.

These three are: "campus-512", which contains a portion of the the Purdue

campus in the visible spectral band; and the girl; and the space shuttle



image. The former contained 512 x 512 pixels and the two latter contained

256 x 256 pixels.

As has pointed out, the reliability and quality of feature extraction process are

measured in terms of overall classification error, feature classification

performance, and subjective objects appearance. The performance of the

first two evaluators is highly dependent on the accuracy of the ground-truth-

map. Thus in order to minimize the effect of unrelated error in classification

performances, the first two evaluations (OME and FCP) are applied only to

the test areas which have a relatively accurate ground-truth-map (Fig.4.3 see

also appendix B). However the SOA evaluation is applied to the whole area

in all of the data sets.

4.3.1 Feature Classification Performance

The original pixel-features and the compacted object-features are used

separately to determine the classification accuracy in each space. This

evaluation is done by comparing classification performance in these two

particular spaces. The results of each trial can be presented in comparison

tables, where in each table three different parameters have been considered:

• classification performance

• compaction coefficient

• CPU time for classification.

The set No.1 contained 9 different ground cover classes (appendix B), which

the 12 channels spectral imagery of this area are presented by Fig.4.2.a and

Fig.4.2.b. Tables 4.3 and 4.4 are examples of feature evaluation using two
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Fig.4.3 Ground-truth-map of data set No.1
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Table 4.3. Feature performance using Bayes-ML classifier (set No.l)

Performance of PixeI-Features

Number of Features=369,600 Bytes
True Class J

Total# Corn
Corn 10104 3942

Soybeans 12910 6
Woods 389
Wheat 944
Sudex 1219
Oats 603

Pasture 339
Hay 746

Compaction Coefficient =1

Number of Samoles Classified

Soy. _/ood Vhe. Sud. Oats Pas. Hay Non %Correcl
102 145 149 1 22 0 22 721 88.5%
r1717 482 108 8 87 0 14 488 90.8%

4 10 328 3 0 1 2 0 41 84.3%
0 8 8 732 0 24 0 9 163 77.5%
0 17 0 0 1175 21 0 2 4 96.4%
1 12 0 8 3 508 0 28 43 84.2%
0 0 0 0 0 0 307 0 32 90.6%

22' 1 1 21 3 52 0 592 54 79.4%
Nonfarm 3546 17 69 14 68 1 111 9 81 3176 89.6%
Totals 30800 8992 1936 978 lO89 1191 826 318 , 748 14722, 89.2%

Overall Performance = 89.2% I CPU Time = 515.2 seconds

Performance of Obiect-Features

Number of Features=13,692 Bytes Compaction Coefficient =27

True Class Number of Samples Classified

Total# Corn Soy. NoodWhe. Sud. Oats Pas. Hay Non %Correct.
Corn 10104 9592 123 17 67 0 6 0 66 233 94.9%

Soybeans
Woods

12910
389

Wheat 944
Sudex 1219
Oats 603

Pasture 339
Hay

Nonfarm
746

3546

24 12409 209
0
6
0
4
0

45
69

74
4 385 0

11 12 !824
9 0 0
1 0 2
0 0 0
0 0 0

136 12 94

1 27 0 11 155 96.1%
0 0 0 0 0 99.0%
0 11 0 0 80 87.3%

1193 13 0 3 1 97.9%
0 588 0 0 8 97.5%
0 0 339 0 0 100.0%
9 1 0 691 0 92.6%
8 244 0 118 2865 80,8%

339 889 13342 93.8%Totals 30800 9740 r2693 635 1061 1202 890

Overall Performance = 93.8%

Comparison:

I CPU Time - 18.8 seconds

Compaction Coefficient ................................ 369,600/13,692 = 27.0

Performance Improved ................................... from 89.2% to 93.8%

CPU time speed up factor ...................................... 515/1 8.8 = 27.4
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Table 4.4. Feature performance using Bayes-ML classifier (set No.2)

Performance of PixeI-Features

Number of Features=115200 Bytes

True Class
Total#

Corn 2400
2400Soybeans

Woods 8OO
Wheat 800
Sudex 800
Oats 800

Pasture 800
8OOHay

Nonfarm
Totals

0
9600

l

Compaction Coefficient =1

Number of Samples Classified
Corn Soy. Wood Whe. Sud. Oats Pat. Hay INon I%Correct
2250 0 146 0 0 1 3 0 0 94%

0 2322 76
3 1 785

17 0 11
0 0 0
0 0 9
0 0 0
0 2 11
0 0 0

Overall Performance = 94.8%

0 0 1 1 0 0 97%
5 0 0 0 6 0 98%

767 0 5 0 0 0 96%
0 791 5 0 4 0 99%
7 0 719 63 2 0 90%
0 0 98 701 1 0 87%
2 0 2 15 768 0 96%
0 0 0 0 0 0 100%

0 94.8%__27023251038 781 791 831 783 781

I CPU Time = 22.20 seconds

Performance of Object-Features

Number of Features=4236 Bytes Compaction Coefficient =27

True Class
Total#

Corn 2400

Soybeans
Woods

24OO
8OO

Wheat 800
Sudex 800
Oats 800

Pasture 800

Hay
Nonfarm

8OO
0

Totals 9600
|

Number of Samples Classified
Corn Soy. tVood Whe. Sud. Oats Pat. Hay Non "YoCorrect
2391 1 6 0 0 0 2 0 0 100%

Overall Performance = 98.6%

0 2399 0 0 0 0 1 0 0 100%
14 1 778 7 0 0 0 0 0 97%
33 0 0 767 0 0 0 0 0 96%
0 0 0 0 792 5 0 0 3 99%
0 0 7 2 0 767 18 6 0 96%
0 0 0 0 0 12 788 0 0 99%
0 7 3 0 0 0 7 783 0 98%
0 0 0 0 0 0 0 0 0 100%

240323281240 729 792 851 770 487 0 98.6%

I Time 0.67 secondsCPU

Comparison"

Compaction Coefficient .................................... 115200/4236 = 27.2

Performance Improved ................................... from 94.8% to 98.6%

CPU time speed up factor ................................... 22.20/0.67 = 33.13
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To establish the unity relation, the system learns about the functional

coefficients simultaneously with the data acquisition process by measuring

the object spectral gradient which, is then, normalized within a window.

Classification accuracy is dependent on both the classification algorithm and

the training sample set, furthermore, it is slightly dependent on the window

size, which will be investigated in this section. Various multispectral image

data are used to measure object misplacement error versus size of window

for functional assignment. This corresponds to determining feature

performance as a function of window size n . The performance of the
w

compacted object-feature, extracted from multispectral image data, is plotted

in Fig.4.4 (using data set No.l) and Fig.4.5 (using data set No.2), and

compared with the performance of the original pixel-features from the same

scene.

The general form of the functional is defined by (see section 2.7):

(Yi' Xr) = (] Si" Xr Vi+ 13Vn)"1

In the second trial as Figure 4.5 shows two different functionals Fun.1 and

Fun.2 are defined for object-feature extraction. Where in the first functional

(Fun.l) the coefficient ocand _ are defined by

oc=0 and 13=1 if n._<5.d
I

oc= 1 and 13= 0 otherwise

and in the second functional (Fun.2) the coefficient ocand 13are defined by

d n._ d 2
oc- and 13-

n.+d n.+d
I I
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As Fig.4.4 and Fig.4.5 show the feature performance for window size more

than 3 lines is almost constant for a particular functional.

100

95

w

6 9O

o

80
,,=

3

......... ...... . ........ ° .................. ..... .................... . ....... •

o M.L. Object-feature

..... A---- M.L. Pixel-feature

------a---- M.D. Object-feature

- - _ - M.D. Pixel-feature

75

-&

701 ,..,.., • ",'" , ,''' "'' '
2 5 8 11 14 17 20 23 26 29 32

Window size (divided by nx)

Fig. 4.4. Effect of window size on feature performance using data set No.1
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Fig. 4.5. Effect of window size on feature performance using data set No.2
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The compaction coefficient is dependent on the data type, where the metric

coefficient for feature extraction is adapted within the window. Thus it is

expected that, regardless of the data type and the functional space, the

compaction coefficient also be a function of the window size. Three different

data sets are used and the performance of the compaction coefficient as a

function of window size is plotted in Fig.4.6. Figure 4.6. shows the

compaction coefficient is almost constant for window height larger than three

lines.

29

26

23

E
_. 20

8
c 17
.o_

E
8 14

11

8

Functional.2 data set.1

Functional.1 data set.1

Functional.1 data set.2

Functional.1 data set.3

2 5 8 11 14 17 20 23 26 29 32
Window size (divided by nx)

Fig. 4.6. Effect of window size on the compaction coefficient using three
different data sets
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Classification accuracy is dependent on both the classification algorithm and

the training sample set. It is only slightly dependent on the window size, as

seen earlier. The objective of this section is to demonstrate the validity of the

path hypothesis for unsupervised object-feature extraction and to show that

performance of the object-features is better than the pixel-features,

independent of the choice of classifier decision rule. Once an object-feature

is classified the membership of pixels which belong to that object are

determined simultaneously, regardless the pixels' location in the scene.

Three different spaces (Diamond space, Euclidean space, and Chebyshev

space) are used separately for minimum distance functional construction to

illustrate the degree of metric dependence in the feature classification

performance relative to a maximum likelihood Gaussian decision rule.

The M.D. discriminant function in

following equation:

i _ Is,,- II¥1= { s,,
k=l giVik + gyvyk

Diamond space represented by the

+ g_In(v_,)+gyIn(v, ) }

In the Euclidean space the M.D. discriminant function is defined by:

2

O_i (Y) { ( s,,- sy, )= ..... + gi In(v,,)+ gy In(v,,) }
k=l giV_k + gyMy k

And in the Chebyshev space the discriminant function is represented by:
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o d Is.,-s,.I In( )}o_i(Y) = Sup { --- +giIn( v,,)+gy vyk
k=l gi v_k+ gyVyk

The results of overall feature performance ( 100 - OME %) versus selected

classification decision rule in the metric spaces are plotted in figure 4.7 and

Fig .4.8.

Figure 4.9 shows the comparative results of feature classification

performance (FCP) maximum likelihood Gaussian decision rule, where, in

this test only the spectral features of objects are used for their classification.

Fig.4.10 shows FCP of data set No.1 using minimum distance decision rule in

Diamond space. Fig.4.11 shows FCP of data set No.1 using M.D. decision

rule in the Euclidean space. Fig.4.12 shows the feature classification

performance of data set No.1 using M.D. decision rule in the Chebyshev

space for classification, where the performance of the pixel-feature and the

object-features are presented separately.

The same experiment is done by using data set No.2 for classification of

object-features (compacted data) and pixel-features (original data), and the

comparison results are presented in the figures Fig.4.13, Fig.4.14, Fig.4.15

and Fig.4.16.
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The spectral feature for a given class is a function of sun angle, ground slope,

ground moisture, atmospheric absorption, MSS instrument noise, and many

other parameters. Therefore, the classification performance is dependent on

the training samples, even if they come from the same ground cover type. By

training the classifier using samples from the data set to be analyzed the

effects of many of these parameters are normalized out. Typically, a total

training set for a given class consists of several subsets of data, which are

selected from various locations throughout the image. However for obtaining

contextual features those pixels should be contiguous in the square area

(training field) with a size comparative to the data dimensionality (number of

spectral channels). Also, contextual information is highly dependent on the

sensor altitude and spatial resolution. So the need for training samples from

the same Flight-line is significant.

Two training sets are selected from different areas in different sizes. The

statistics of the training sets are presented in the appendix B. The

performance of pixel-features (original data) and object-feature is presented

in Table 4.3, using the first training set. In this experiment a standard

maximum likelihood Gaussian classifier is used for classification. Figure 4.17

shows the comparative feature classification performance (FCP) using the

first training set, where only the spectral features of objects are used for their

identification. The same experiment is done by using the second training set

for classification of the object-features (compacted data) and pixel-features

(original data), and the comparison results are presented by Fig.4.18.
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Since the classification process is performed in the feature-space rather than

in the observation-space, the algorithm is much faster than conventional

ones. This results from the fact that the size of feature-space is much smaller

than the size of pixel-feature-space. These examples' results show that data

redundancy is reduced by a significant amount (in this case, the size of the

feature-space for scene representation is reduced by a factor of 27). In

addition, the accuracy of information extracted from the object-features (as

measured by classification accuracy) is slightly greater than that obtained

when using the original pixeFfeatures. It is believed that the classification of

ground cover fields using the object-features based on the proposed

approach is more accurate and efficient than the point by point classification

in the original pixel-features.

4.3.2 Spatial-Feature-Map Appearance

Subjective appearance is an appropriate criterion when some objects in the

scene become more important than the others regardless of the size of

objects. In such cases it is often difficult to define a mathematical expression

for adequately quantifying feature quality. The visual assessment will be

used for this kind of qualification and for evaluation of the accuracy of the

compaction process in preserving the features of small objects or objects with

the complex boundaries. The obvious disadvantage of this criterion is that it

is subjective rather than quantitative. The subjective feature evaluation is

performed by visually comparing the map of compacted object-feature (called
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spatial-feature-map), with the spatial map of the original pixels (called

ground-truth-map).

As it pointed out, since the classification performance is dependent on the

training samples and the ground-truth-map, the spatial-feature-map

appearance is a valuable criterion for feature evaluation. Also, in the feature-

map there is a significant within-class information which can be used for even

ground-truth-map evaluation.

Spectral information of surrounding pixels is correlated with the center pixel

under consideration. In object detection the spectral features of adjacent

pixels are considered using neighboring information; thus the object-feature

which we represent them in this experiment only by (Si , Li) built upon both

spectral and contextual information. Therefore, it is expected that the

classification accuracy to be higher by using object-feature rather than the

individual pixel-feature (notice that we did not consider effect of V. in the
I

classification of object-feature using M.L. decision rule). Fig.4.19 shows by

using the object-feature, for example, the wheat field, which is circled,

classified better than when the pixel-features are used for its classification,

Fig.20.

A test for robustness of the path hypothesis and accuracy of the unity relation

shows that the functional based on path-hypothesis, can detect a single

randomly selected pixel in a relatively large soybean field which is replaced

by a pixel from some other ground cover types; this pixel is shown in a

triangle in Fig.4.19 and Fig.20.
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Fig. 4.19 Classification map of object-features (data set N0.1)

r_,:.;_:'._..LPAGE IS

OF POOR QUALITY



117

Fig. 4.20 Classification map of pixel-features (data set N0.1)
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The appearance of an object in the spatial-feature-map can be intelligently

incorporated into the feature selection strategy for extraction of more complex

classes in the scene. Figure 4.3 shows the original data ground truth-map

data set No.1 and Fig.4.21 is the corresponding spatial-feature-map of data

set No.1 after object-feature extraction, which contained 1141 different

objects. Fig.4.21 shows that there is significant within-class variation, and

thus more information about the scene (e.g., soil type and vegetation

condition) might be extracted than will be attempted here, perhaps using

even more complex features.

It is often desirable to define boundaries sharply which separate a relatively

limited number of objects with different spectral features, but it is not

important to preserve the interclass scatter information within the boundaries.

The loss of interclass scatter information is roughly equivalent to contouring

within the scene and ignoring the contextual features. This kind of illustration

is a good tool for evaluation of image data which do not have a ground-truth-

map. To illustrate the validity of the unity relation and the path-hypothesis in

definition of correct boundaries and accuracy of the spatial-feature-map,

several images with the different complexity are used.

The campus-image with the size of 512 by 512 is shown in figure 4.22 which

is more complex than the later images. The results of compaction of the

campus-image by the factor of 41 is presented in the figure 4.23. Figure 4.24

is the original girl-image with the size of 256 by 256 pixels, and Figure 4.25

shows the spatial-feature-map of the same image after compaction by a

factor of 45. Figure 4.26 shows results of im3ge compaction (spatial-feature-
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map) by the factor of 36 using the original shuttle-image with the size of 256

by 256 pixels which is illustrated in figure 4.27.

By comparison of the spatial-feature-maps of compacted images by their

corresponding original images, the accuracy of the object-feature-extraction

technique will be clear.
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Fig. 4.24 The original 256 x 256 girl-image
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CHAPTER 5

SUMMARY AND CONCLUSION

In order to reduce data redundancy in multispectral imagery we have

proposed a model, based on a scene object-description, for multispectral

image representation. We have developed an on-line unsupervised object-

feature extraction algorithm (called AMICA) which detects the objects by

using the unity relation based on the path-hypothesis. The unity relation

among the pixels of an object can be defined with regard to the: adjacency

relation, spectral-feature and spatial-feature characteristics in an object.

AMICA uses the within object pixel-feature gradient vector as a valuable

contextual information to construct the object's features, which preserve the

class separability information within the data. Based on the path-hypothesis

the data read sequentially into the system and the unity relation between a

current pixel and the path-segments (objects in the observation space) are

examined, the current pixel may be merged into an appropriate object or it

will initiate a new object. An object is represented by a relevant object-

feature set.

AMICA is implemented to real multispectral image data. The performance of

the object-features is compared with the performance of the original pixel-

feature. The effect of metric spaces, classifier decision rules, training sets on
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the performance of the features are studied. Three different evaluation

strategies (overall misplacement error, feature classification performance and

subjective object appearance) are selected for comparative feature

evaluation using the pixel-features and the object-features.

The experimental results indicate that data volume is reduced by a significant

amount (the size of the feature-space for scene representation is reduced by

a factor between 20 to 50 which is data dependent). In addition, the accuracy

of information extracted from the object-features (as measured by

classification accuracy) is greater than that obtained when using the original

pixel-features. It is believed that the classification of ground cover fields in the

feature-space based on the proposed approach, is more accurate and

efficient than the point by point classification in the original space.

The correlation among the adjacent pixels in the image data appears in the

form of redundancy in the spectral-spatial features. Spectral information of

surrounding pixels is correlated with the center pixel under consideration. In

object detection the spectral features of adjacent pixels are considered using

neighboring information. Therefore, it is expected that the classification

accuracy to be higher by using object-feature rather than the individual pixel-

feature. The improvement of the classification performance is a consequence

of incorporation of the spatial information in the object-feature extraction

decision rule; however, in addition to that, it could be also a consequence of

complexity reduction by data compaction (Hughes' phenomenon).
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Since the classification process is performed in the feature-space rather than

in the observation-space, the algorithm is much faster than conventional

ones.

The object appearance in the feature-map can be incorporated (by visual

assessment) into the feature selection strategy for extraction of more complex

objects in the scene.

AMICA can be used as a boundary finding algorithm by using the spatial-

feature-map. It has been implemented to find boundaries in the pictures (e.g.,

figure of shuttle ) as well as for multispectral imagery. In this case the feature-

map can be used for further practical application such as detection and

recognition of objects to replace the human vision system, in the automatic

object recognition.

In summary, AMICA has been used advantageously on two problems

concerning feature extraction and compression of multispectral remotely

sensed image data. It appears that the proposed object-feature extraction

process, for on-line redundancy reduction in the scene representation, has

several advantages over most of the conventional techniques.

The performance with the object-features can provide an

improvement in classification accuracy instead of any degradation.

The process is substantially capable for tracking the complex

boundaries.
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The feature extraction process does not require any prior information

such as statistical properties of the scene, distribution, shape and size

of the object, or number and type of classes in the scene: the process

is in this sense completely unsupervised. There is only a very weak

dependence on the window size.

The process allows substantial flexibility for choosing features.

Depending on the desired information, different attributes can be

emphasized or de-emphasized by selection of an appropriate

functional in the measure-space.

The information extraction process does not need to be preceded by

a data de-compaction.

The compaction process is not iterative and may be implemented on

board the sensor platform, i.e. the proposed object-feature extraction

could be carried out before transmitting the image data to the

receiving terminal. In this case, a reduction of the transmission rate,

and, consequently, the required transmitting bandwidth is also

achieved. Of course, this solution requires an increase in the

processing capabilities at the satellite borne terminal, but the present

trend of VLSI digital microelectronics and development in this

technology suggests this approach as a technically feasible solution

in the future. In this case, the unsupervised object-feature extraction

process can be illustrated in Fig. 5.1 as an interface between the data

acquisition system and the telecommunication system, which object-
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features, rather than pixel-features, are used for data transmission as

well as data archiving, distribution and information extraction.

I Data L___Object-Feature ___m
Acquisition ExtractionI LL

ion

°°°,,° \_ 'l _**_,i°°
Information

Consumption

Fig.5.1 A,typical application of object-feature extraction
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Appendix A

Uncertainty

It is important to realize, regardless of the similarity measure selected, that

the measurements are not precise and there is always some uncertainty in

the observations. The effect of this uncertainty should be considered in the

selection of a system of mathematical models. There are several sources of

uncertainty, and since the type of uncertainty involved in our approach will

effect the choice of the system model, it is important to distinguish between

them. The main sources of uncertainty in systems are as follows:

Inaccurate measurements: Inexact measurements can cause uncertainty in

models of physical processes which are absolutely deterministic. For

example, measurement accuracy of a certain amount of

electromagnetic radiation energy by the sensor, regardless of the

quality of the sensor system, depends on the number of digitized gray-

levels.

Random occurrences: If the outcome of a physical process is believed to be

random, regardless of the measurement accuracy, there is another

type of uncertainty. There is an element of concern about the evolution

of the process which is unaffected by environmental imprecision. For

example, withdrawing only one seed from a box containing a mixture

of 50% wheat and 50% oat has two equally likely, mutually exclusive

outcomes (Oat or Wheat) per each trial. Thus the evolution of a

sequence of identical and independent trials of this experiment can

not be predicted with certainty. Models of processes which exhibit this

kind of uncertainty are called stochastic or probabilistic models. For a
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fair mixture of the oat and wheat, we have the a prior idea that the

probability of each outcome is equal to 0.5; however, this value will

change to zero or one after the trial was determined.

Vague descriptions: There is an element of uncertainty which is not caused

by measure error nor by random occurrence. Assume that all

members of a set P are deterministic and fixed. Let Xk be a

deterministic member of P. There is uncertainty in the determination of

the set of all members from P which are similar to Xk because of

vagueness in the similarity criterion. Neither a deterministic model nor

a stochastic model is suitable for this physical situation, which

manifests a source of non-statistical uncertainty or fuzziness. In a

deterministic set every element has a precisely defined criterion of

membership equal to either zero or one. Inthe case of a fuzzy set the

class of objects need not necessarily either belong or not belong to

this class. Here each object may have intermediate grades of

membership, ranging from zero to one. It is important to realize that the

class membership is fixed and will not change even after the trial was

determined.
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Appendix B

Data Statistic

Test area Data set NO.1 containing:

Number of lines/frame = 220

Number of pixels/line = 140

Number of channels = 12

Data set NO. 1 test area class statistic

Class type

C 1

S 2

Description

Corn

Soybeans

Woods

# of pixels

10104

12910

Percentage

33%

42%

f 3 389 1.3%

W 4 Wheat 944 3.1%

x 5 Sudex 1219 3.9%

o 6 Oats 603 2%

P 7 Pasture 339 1.1%

h 8 746

3546

Hay

Non-Farm9

2.4%

11.5%
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Spectral imagery of test area data set NO.2 from channel-1 to channel-6
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Spectral imagery of test area data set NO.2 from channel-7 to channel-12

L J/-
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Ground-truth-map of data set NO.2
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Appendix C

Program for AMICA

* This progeram test_he Unity Relation *
* to extract object-features, for scene representation. *
* nh number of che_els (dimensionality). *
* ny number of lines in the scene
* nx number of pixels per scan line *
* nwg higth of window= 2 x nw
* gH Horizontal pixel-feature Gragien *
* gV Vertical pixel-feature Gragient *
* gHV Diagonal pixel-feature Gragient °
* inputs : *
* Data in BIL format: *

" outputs:
* spatial-feature-map; ADRS _=-Lt' *

* object-features; Feature (X=Si) *

parameter(nh= 12.nx= 140,ny-220,nrp- 24,nw- 5)
pararneter(nwg=2"nw.nxy=nwg'nx.nhmx-5"nh,n max-50

"nh)
integer

wH(nh,nwg},wV(nh,nwg),gH (nh),gV(nh),gHV(n h),s umH.sumV

integer
X(nh),W(nh,nx,nw),ADRS(nx,nrp),adk(nx,3),bufk(nx)

integer dmin(nx.3),DIS.disl ,dis2,dis3,dis4,dis5

Integer bufa(3°nx),al,a2,a3,a4,a5,armn.adlt.a, fdr,uopen
integer Y(nh,nx),V(nh.nx),S(nh,nx),N(nx)
character* 1 scen(nx)

real Xl(nh),tim(2)
f dr.uopen ('F210',384)

*" fdr=uopon('data/FLC 1',384)
"" fdr.uopen('dataJF LC2'.384)
** tdr=uopen('data/F LC3',384)
"* ld r. uope n('data/F LC.4',384 }

open(10,file-'FEATUR E')
open( 11 ,file-'ADRS')
open(12,f ile-'F EATU R 1')
open(13,f ile-'F EATU R2")

**.....o.o**...o.o..o.o.o....o..ooo...o .o...o... H.....

Initlalion of the Functional Coefficients
°°o..°...°...° o..°.o.... °oo. ...... ...o.oo.......o.°.**.

do 1000 iw-l,nw
twl-hu-1
do 1100 ih.l,nh
wH(th,lw)-0
wV(ih,iw)-0
call uread(fdr,scen,nx)

do 1110 ix=l,nx

W(ih.lx,iw)-ichar(scen(ix))
if(W(ih,ix,iw}.lt.0)

W(ih,ix,iw)-W(ih,ix,iw)*256
ixl=ix-1

if(b(.ne. 1) wH(ih,iw).wH(ih,iw)+iabs(W(ih,ix,iw)-

W(ih,ix 1 ,iw))
if(iw.ne.l) wV(ih,iw)=wV(ih,iw).iabs(W(ih,ix,iw)-

W(ih.tx.iw 1))
1110 conlin ue

wH(ih,tw* nw)-wH(ih.iw)
wV(ih,lw, nw).wV(Ih,iw)

11O0 continue
1GO0 continue

do 1200 ih-l,nh
wV(ih, 1)=wV(ih,2)
wV(ih.nw+ 1)=wV(ih,nw)

gH(ih)-0
gV(ih)=0

do 1210 iwg-l,nwg
gH(ih)-gH (ih)+wH(ih,iwg)
gV(ih).gV(ih)÷wV(ih,iwg)

1210 continue

1200 continue

sumH-0
sumV=0

do 1220 ih.l,nh
sumH-sumH+gH(ih)
sumV-sumV*gV(ih)

1220 continue

il(sumH.It.sumV) then
do 1230 ih-l.nh

gHV(ih)-gH(_)
1230 continue

else
do 1240 ih-l,nh

gHV(ih)-gV(ih)
1240 continue

endil
.. ..... °.°. ..... ..oo...,°. ...... °.°°,oo.°.. ...... ,o..o°

Segmenatation ol 1he First Scan Line
, ..... °°,°o°o.., ...... .,°.°..°.°°°°°,°°.°°.,***.°.°.°.°

do 1300 ik=1,nx

1300

1400

1510

1520

bufk(ik)=O
continue
k.1
kS..ik

bufk(k)=ik
ik-k+t

ADRS(1,1)-k5
adk( 1.1)-k5
N(k5).I
do 1400 lh-l,nh

S(ih,k5)-W{Ih,1.1)
V(ih,k5)-O
Y(ih,k5)-W{ih. 1,1 )
continue

do 1500 ix-2.nx
do 1510 ih-l,nh

X(ih).W(ih,lx. 1)
continue

disloDIS{nxy,V(1,k5).S(1,k5),N(k5),X.gH,nh)
if(dis 1.le.nh) then

ADRS(ix.1)-k5
adk(Ix,1).k5

N(k5)oN(k5)+ 1
do 1520 ih-l,nh

S(ih,k5).S(lh,k5)+ X(ih)
V(ih,k5)=V(ih.k5}+iabs(Y(ih.k5)-X(ih))
Y(ih,k5)=X(th)

continue
etse
k5-ik

bufk(ik)-ik
ik.ik.,-1

ADRS(ix,1)-k5
adk(ix.1)=k5

N(kS)-I
do 1530 Ih=l,nh

S(ih,k5)-X(th)

•.... _,, .--_..

...."",,: i'y
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V(ih,kS)-0
Y(ih,k5)=X(ih)

1530 continue
endtf

1500 continue
a,-k5
la.0

iy-2
ly1=1
ly2-nrp
ly3-nrp
Ib(.2
Ibfl=1
ibf2=3

*******************************************************

..............._.,:=_.n._.t.,.;..,._!._..S=..,..,...
i=1
Nv-nw
twl=nw-1

kvg.nwg
nnp-ny-nw+ 1
t 1-e¢ime(ttm)

tl-tln'_l)
do 29gg Ip,.2,ny
I- l+mod(i,nw}

..............JtC2_..O:....n.._._o..2?.!..................
Computing the Functional Coefficients

tw- l+mod(iw,nw)
Iwl. 1.mod(iw t,nw)

Iwg. l+mod(iwg,nwg)
do 2100 ih= 1,nh
call uread(fdr.$con.nx)

do 2110 Ix- t,nx
W(ih.ix .iw)= ichar (scen {ix) )
il(W(ih,tx,iw).It.O)

W(ih,ix,iw) -W( _,ix,iw)÷ 256
2110 continue

wH(ih.lwg)-0
wV(ih,lwg)-0

do 2120 ix-2,nx
ixl-ix-1

wH(ih,iwg) -w H(ih ,iwg) +iabs( W{ih,tx ,iw)-
W(ih,tx 1,1w))

wV(ih,iwg )-wV(ih,iwg )+iabs (W(ih ,ix,tw) -
W(ih,ix,iwl))
2120 continue

gH(ih)=0
gV(ih)-O

do 2130 itg= 1,nwg
g H(ih)-gH(ih) +wH(ih.itg]
gV(ih).gV(ih}+wV(ih.itg)

2130 continue
2100 continue

sumH.0
sumV..O
do 2140 Ih=l.nh

sumH=sumH÷gH(ih)
sumV.4umV+gV(ih)

2140 conllnu4

If(sumH.II.sumV) then
do 2150 lh.l.nh

gHV(ih)=gH(ih)
2150 conlinue

else

do 2160 th- 1,nh

gHV(ih)=gV(ih)
2160 Continue

endif

Labeling lh First Column of the Scene °

t01 Ix.1
Ix2.1x. 1

do 110 lh=1,nh
X(ih)=W(ih.tx,i)

110 continue
,°,.,,.,,o,.o**,,,,...,. ....

Case #2
• ...... .o.°.....°.....°°°.°.

a2.ADRS(ix.iyl ]
k2=adk(ix,ibf t)
dis2-DIS(nxy,V(t .k2),S(1 ,k2).N{k2),X,gV,nh)
If(dis2.gt.nh) goto 103

ADRS(Ix,iy)=a2.
adk(tx,ibl).k2
N(k2)=N_2)+ I
do 121 ih=l,nh

S(ih,k2) -S(th,k2)+ X(lh)
V(ih,k2)-V(lh,k2)+ iabe(Y(ih,k2).X(ih))
Y(ih,k2)=X(th)

121 continue

go10 201
..,°,°.°.°°°°.°.°°.....,.,...

Case #3
.........°.....°°° **.°......°

103 a3=ADRS(Ix2.iy 1)
k3-adk(ix2._l )
If(k3.eq.k2) clis3.,dls2
if(k3.eq.k2) goto 105
dic3-DIS(nxy.V(1 ,k3),S(1,k3),N(k3),X,0HV, nh )
If(dtc3.gt.nh) goto 105

ADRS(ix,iy)=a3

N(k3)=N(P.3)+I
do 131 Ih=l,nh

S(ih.k3) -S (ih,k3}+ X(Ih)
V(ih,k3)=V(Ih,k3)+iab6(Y (ih,k3)- X (ih))
Y(Ih,k3)-X{th)

131 continue
goto 201

Case #5

105 ff(la.gt.O)then
a5-bufa(ia)
ta=ia- 1
eke
I-a+1
aS-a
endif

1051 if(bulk (ik).eq.O)then
kS-tk

b_Jfk(ik)-lk
ik- l+mod(ik.nx)
flagk= 1

else

ik= l+mod(Ik.nx)
llagk..O

endtf

if(flagk.eq,0) goto 1051
ADRS(ix,ly)=a5
ad,.( _._).k5
N(k5). 1
do 151 Ih=l,nh

S(ih.kS)-X(th)
V(ih,k5).0
Y(ih,k5)-X(ih)

151 continue

disS-minO(dis2.dis3)
if(dis5.1e.nhmx) then
|f(dis2.eq.dis5) then

dmln(ix,ibf)=2
else

drnln(ix, lbf)=3
endil
else

dmtn(ix,bf)=5
endif

Labelling no_oEdge Plxels o( the Scene

201 do 200 tx=2,nx- 1
Ixl-tx-1
Ix2.ix+ 1

do 210 Ih=l,nh

X(ih)oW(ih,ix,i)
210 continue

Ca.se #1

al =ADRS(ix 1.iy)
k 1.a_k(ix 1.ibf)
dis1 .DIS(nxy.V(1 .k 1),S(1.k 1).N(k 1).X.gH.nh)
a2=ADRS(ix.lyl)

I k2-adk(ix,ibf 1)
if(kl.eq.k2) then
dis2=dlsl
else

dls2-DIS(nxy,V(1.k2),S(1.k2).N(k2),X,gV,nh)
endtf

dis5-min0(dts 1 ,dis2)
if(di$5.gt.nh) goto 203
ff(dis5.eq.dis 1) then

ADRS(ix,iy)=al
adk(tx.ibf).kl

il(N(kl).gt.nmax) goto 32

. I_k..:,',,,_",
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211
32

N_I)-N(kl)+I
do 211 lh-l.nh
S(ih,k 1)=S(ih,k 1)+X(ih)
V(ih.k 1)=V(ih,k 1). _.s(Y(ih,k t)-X(ih))
Y(ih.kl)-X(ih)
continue

a3-ADRS(ix2,1yl)
k3=adk(ix2,ibf 1)
If(k1 .r_.k3) then
dis3-DIS(nxy,V(1.k3).S( 1.k3),N(k3),X,gHV,nh)
If(dls3Je.nh) then
amm-mlnO(el ,a3)
If(arn'm.eq el) then

krmn-kl
kdlt=k3
edit.a3

else
krmn-k3
kdlt,,,.k1
adff=al

endif

do 2131 Ix-l,nx
ff(adk(Ix ,ibf2).eq.kdlt) adk(Ix,ibf2)=krmn
if(adk(Ix,ibH) eq.kdlt) adk(Ix,ibf 1)-krmn
continue
do 2132 Ix=l.lx
If(adk(Ix ,ibf) .eq kdlt) adk(Ix,ibf)=krrnn
continue

do 213 ty.l,nrp
do 213 Ix=l,nx

if(ADRS(1x.ly).eq adlt) ADRS(Ix,ty).armn
continue

N(krmn)=N(krmn)+N(kdlt)
do 214 ih-l,nh
S[ih.krmn)=S(ih,krmn)* S(ih ,kdlt)
V(Ih.kr rnn).V{ih,kr rnn)+V(ih,kdlt)
Y(ih,krmn)-X(ih)
continue

2131

2132

213

214
Ik-kdlt

bufk(ik)-0
la=ia+ 1

bufa(la)-adlt
endif
endif

Case #2
,o,°,°, ..... ,,,,°,,o°°°,°°°°°

else
ADRS(ix.iy)=a2
adk[ix.ibf)=k2
if(N(k2.).It.nmax) then
N(k2)-N(k2)+ I
do 221 ih-l,nh

S(ih,k2)=S (ih,k2)+ X(ih)
V(ih,k2) =V(ih,k2)÷iabs(Y(ih.k2)X(ih))
Y(ih,k2)=X(ih)

221 continue
endif

endif

.............._o_o._.....
Case 13

......... ...o,.,.°,o°,..,..,.

203 a3-AORS(ix2,tyl)
k3-adk(ix2,1bf 1)
If(k3.eq.k2) dis 3,,.dis2
if(k3.eq.k2) goto 204
If(k3.eq.kl ) dis3=dls 1
If(k3.eq.kl) goto 204
dis3=DIS(nxy, V(1 ,k3),S(1 ,k3).N(k3),X.gHV,nh)
if(dis3.gt.nh) goto 204

ADRS(ix,iy)=a3
adk(ix,ibf)-k3
if(N(k3).gt.nmax) goto 33
N(k3)=N(k3)÷l
do 231 ih=l,nh
S(ih.k3)=S (ih,k3)+ X(ih)
V(ih,k3)-V(ih,k3) + _bs (Y(ih,k3)-X(ih))
Y(ih.k3)=X(ih)

231 continue

33 a4=ADRS(Ix 1,iyl)
k4=adk(tx 1,ibf 1)
]f(k3.eq.k4) goto 206
dis4=DIS(nxy,V(1 ,k4),S(1 ,k4),N(k4),X,gHV,nh)

If(dls4.gt.nh) goto 206
armn.minO(a3,a4)
If(armn.eq.a4) then

krmn-k4

kdlt=k3
adlt.a3

2331

2332

233

234

else

endi

k.kdlt

bufk(ik)=O
ia-La+l

krmn=k3
kd_=k4
adR-a4

do 2331 Ix.l,nx

If(adk(Ix.lbf2).eq.kdlt ) adk(Ix,lof2)=krrrm
if(adk(Ix,ibf 1).eq.kdlt ) adk(Ix,bf 1)-krrrm
continue
do 2332 Ix= 1,ix

if(adk(Ix,ibf) .eq .kdll ) adk(Ix,lbf)-kr mn
continue

do 233 ly=l.nqo
do 233 Ix-l,nx

if(ADRS(Ix.ly).eq.adtt) ADRS(Ix,ty)=armn
continue

N(kr rnn).N(krmn) +N(kdlt)
do 234 Ih-l,nh

S(ih,krmn).S(ih,krmn)+S(ih,kdlt)
V(ih,krmn).V(ih,krmn)+V(th,kdlt)
Y(ih,krmn}-X(ih)
continue

bufa(ia)-adll

...............°..°I.°._.....
Case #4

.,**,,°,°o,°.°,°,,°,.°.°,o..,

204 a4.ADRS(ix I ,tyl)
k4-adk(Ix 1,tbf 1)
if(k4.eq.k3) dis4-dis3
if(k4.eq.k3) goto 205
if(k4.eq,k2) dis4-dis2
if(k4.eq.k2) golo 205
if(k4.eq.k 1) dls4-disl
If(k4.eq.kl) goto 205
dis4=DIS(nxy.V(1 ,k4),S(1.k4),N(k4),X.gHV,nh)

if(dis4.gt.nh) goto 205
ADRS(ix,ly)=a4
adk(lx.ibf)-k4
if(N(k4).gt.nmax) goto 206
N(k4)-N (k4)+ 1
do 241 ih.l,nh
S(ih,k4)-S(ih,k4)+ X(ih)
V(ih.k4).V(ih,k4) +tabs(Y(ih.k4)- X(ih))
Y(Ih,k4).X(ih)

241 continue

.............. go_o 2__ .....

Case #5

205 if(iagt O/then
a5-bufa(ia)
ia.ia-1
else
a-a+ 1
a5=a

endtf
2051 if(bulk (ik) .eq. O/then

k5=ik

bufk(ik).ik
ik= 1+mod(ik.nx)
flagk=l

else
ik- 1+ n'Kx:l(ik,nx)

flagk.,O
endif

if(flagk.eq.O) goto 2051
ADRS(ix,ty)=a5

adk(tx,ibf}-k5
N(k5)-I
do 251 Ih=l,nh

S(ih.kS).X(ih)
V(ih,kS)=O
Y(ih,kS)-X(ih)

251 continue
disS-minO(dis 1,dls2.dis3,dls4)
if(dis 5.1e.nhmx) then
if(dis1 .eq disS) then

elseif(dis2 eq dis5) then

elseif(dis3 eq dis5) then

else

endif
else

drnin(ix,ibf)- 1

dmin(ix,!bf)=2

dmin(ix,lbf)=3

dmin(ix,ibf)-4

k

J
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drn_(Ix,ibf)-5
_mdPf

o*****o.Hoo.oo**ooo.o.,. ....

Calm 16
o.o*****o.oo o***ooo.oo..ooooo

206 If(Ip.eq.2) gore 200
adlt-ADR$(ix 1,iyl)
kdll..adk(l= 1,ibf 1)
If(N (kdll).eq.1) then

tflag,.O
If(dmln(lsl.il_l ).eq. 1) then
If(ixl-l.eq.O) pdnt ", 'ERROR 1'.ixl.ip-t

armn-ADRS(ix 1-1,iy 1)
krmn=adk(ix 1-1,tbfl)

eiself(drrdn(ix t,lof 1).eq.2) then
arrnn-ADRS(Ix 1,,J2)
krrrm=ad_(ix 1,1bt2)

elsell(dmln(Ix 1.1bfI}.m:i.3) then
atmn-ADRS(IxJy2)
kmVl-adk(tx,lof2)

e_se_f(drain (ixI ,!t_ 1).eq.4) then
tf(ixl-t.m:l.O) print *. 'ERROR 4'.is 1,110-1

armn-ADRS(Ix 1- t ,ty2)
krmn.adk(ix 1-t.ibf2)

e_zelf(dmln(ix 1,1bf1).eq.5) then
iflag.1

else

pnnt *,'iy'.ip-l,'ix'.ix t.'dmin',dmin(ixl ,ibfl),'N',N(kdlt)
endif

if(iflag.eq.O) then
if(N(krrrm).eq. 1) then
N(krmn).2
do 261 ih=l,nh
S(ih,krmn)=2'S(ih.krmn)

261 continue

endif
adk(ix I .ibf t)-krmn
ADRS{ ix t,iy 1)=armn

Ik.kdll

bufk(ik).o
le-ta+ 1

bufa(la).adtt
endif

endif
200 continue
************************************ ...... o..

Labeling the last Column of Scene
. H...+.+o...o.o......oo..°.o..........o...

Ix-nx
ixl-ix-t
do 310 ih-t.nh
X(ih)-W(ih.ixoi)

310 continue
***, +°°,°oo°,°o°H°,+,,oo,,,,

Case #1
°Hoooo°°°°°.,,o°,,o,o,°o°,,.

al=ADRS(ix I .iy)
k t-adk[ix t,lt)f)
dis 1,DIS(nxy.V(10k 1),S(1.k1 ).N(k 1),X,gH.nh)
If(dP,t .gl.nh) gore 302

ADRS(ix.iy)--t
adk(ix.ibf)=k 1
N(kl)-N(kl)÷ I
do 311 _-t.nh

S(ih,k 1)-S(ih,kl)+X(ih)
V(ih,k 1)-V(_h.kt)+labs(Y(ih,k 1)-X(_))
Y(ih.kl)-X(ih)

311 continue

.............. .goolo _ ......

Case #2
**°,., o°.o,..°.u,o**o,o°ooH

3O2 a2.ADRS(ixJy t )
k2=&dk(ls.ibf 1]
if(k2.eq.k 1) dis2.dml

tf(k2.eq.kl) golo 304
dis2-DIS(nxy,V( 1.k2),S( 1,k2),N(k2).X.gV,nh)
tf(dis2.gt.nh) golo 304

ADRS(ix.iy)=a2
adk(ix,lbf).k2
N_.2)=N(k2)+ 1
do 321 ih-l,nh
S(ih,k2)=S(ih.k2)+X(ih)
V(th,k2) -V(ih,k2.) +labs (Y(lh,k2) -X(_) )
Y(ih,k2).X{th)

321 continue

.............. g ol.o 3_.. .....

Case lut
°°°.°o ........ o°o°o°o.o..o°o

304 a4-ADRS(ixl ,iyl)
k4-adk(ls 1,1bf1)
if(k4.eq.k2) dis4=dis2
ff(k4.eq k2) _Xo 3o5
tf(k4.eq.kl) diM-dis 1

If(k4.eq.k 1) 9ore 305
dis4-OlS(nxy,V(1 ,k4),S(l,k4),N(k4),X,gHVonh)

' If(dlM.gt.nh) g¢_O305
ADRS(ix,iy)=M

adk(ls,Z)q.k4
N(k4)=N(k4)+ 1
do 341 Ih-l.nh
S(Ih.k4)-S(Ihj_4)+X(ih)

V(ih,k4)-V(ih,k4)+iabs(Y (th,k4)-X (ih))
Y(Ih,k4)-X(ih)

34t continue

golo 306

Case #5

3o$ If(la.gt.O)then
aS-bufa{i&)
la-la-1
else
a,.a+ 1
aS-a
endlf

3051 if (bufk(ik).eq.O)then
kS-tk

bufk(k)=lk
ik. I +mod(Ik,nx)
flagk.1

else

ik=l+mod(ls.nx)

lmgk,,O
endM

ff(flagk eq O) gore 3051
ADRS(Ix.ty)-a5
adk(ls,)of).k5
N(k5)- I
do 351 II_l,nh
S(ih,kS)=X(Ih)
V(ih,k5)=O
Y(th,kS)-X(ih)

351 continue

dls.5,-rain O(dts 1,dis2,dlM)
if(disS.le.nhmx) then
if[dis1 .eq.dis5) then

dmin(lx,lbf). 1
elseif (dis2.eq.d|s5) then

dmln(ix,lbf).2
e_e

drrdn(ix.ibf)-4
endif
else

(Irnin(ix,bf).5
endlf

.° °..°.o°....o.°°.***..°o°.°o

Case #6
°..°. °. °....o.oo...° °°.o_°.o

306 if(ip.eq.2) go,to 2000
do 360 16-1,2
ix 1=nx-(2-16)
adlt=ADRS(ls 1,1yl)
kdlt=adk(ix 1,ibf 1)
If (N(kdll).eq. I) then
tflag=O
if(drain(ix 1,1t_1 ).eq. 1) then

armn-ADRS(Ixl-1 ,tyl)
km'm,,,adk(ls 1-1 ,ibfl)

elsetf(dmin(ls 1,1bfl).eq.2) then

arrnn=ADRS(ix 1,ly2)
kmln,.adk(Ixl,llbf2)

elseif(drntn(Ix 1.t/of1).eq.3) then

if(ix 1+l.gt.nx) print 'ERORR 3',ix 1,Ip.-1
armn=ADRS(Ix 1+ 1,ly2')
krmn-adk(ixl+ 1,ibf2)

elseif (dmln(ls 1.1bfI) .e<:l.4) then

sr mn-ADRS(ix I -I ,iy2)
krmn,.,adk(tx 1- 1,ibf2)

elsetf(dmln(ls 1,ibf 1).eq.5) then
Iflag. 1

else

print °,'iy',Ip-1 ,'ix',lxl ,'drrdn',dmtn(Ix 1,1b(1),'N',N(kdlt)
endlf

tf(tflag.eq.0) then
If(N(krrnn).eq.1) then
N(krmn).2
do 361 ih-l,nh
S(lh ,krmn ).2*S (lh,krmn)

OF P,+,..+-+.,.+o.+_'.+JU:!,:+'+",_'
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361 continue
endif
adk(ix t,ibfl)mkrmn

Ik-kdK

bufk(ik)=O
ADdS(ix 1,1y1)=arran

ia=la+l
bufa(ia)=adlt
endif

endif

360 continue

Transmitting the Features

IX- 1
401 iX-0
410 ix-ix+ 1

if(ADRS(bc.ly2).eq.AO RS(ix,ly 1)) then
Ix-lx+l
ix= 1

if(Ix.gt.nx) Ix-nx
endif

if(ix.lt.nx) goto 410
if(Ix.gt,nx) goto 2000

iflag-0
if (Ix.gt.1)then

do 420 Ix=l,lx-1
if(AD RS(Ix,iy2).eq ADRS(ix,iy2))iflag- 1

420 continue
endif

If(iflag.eq.0) then
aS-ADRS(tx ,ly2)
k5-adk(|x,ibf2)
ik,-k5
bufk(ik)=O
do 430 ih-l,nh

X(ih). nint(float(S(ih.k 5))/floal(N(k 5}))
430 continue

write(lO, °) a5
write(lO, °) X
endif
tx.lx+l

goto 401
2000 ly= 1+ mod(iy,nrp)

lyl. 1.mod(;'yl ,nrp)
iy2=l+mod(iy2,nrp)
ibf. l+mod(ibf,3)
ibf 1= l+mod(ibf 1,3)
ibf2- l+mod(ibf2,3)

if(ip.ge.ntp) then
iy3.,-1+rnod(iy3.nrp)

do 450 ix.1 ,nx

ij=ADRS(ix,iy3)
ID =32+mod(ij,95}
$cen(ix)-char(ID)

450 continue

write(11 ,°) (AORS(ix.ty3),ix-1 ,nx)
endff

2999 continue

.............. P_..,°_. _.$1ng.!h,°. ! ,a_..t°!_ °

do 3100 ix=l.nx
adlt=ADRS(ix.iy 1)
kdlt.adk(Ix,llof I)
If(N(kdlt).eq. I) then
iflag-O
if(dmin(Ix,lbf 1].eq. I) then
if(Ixo1.eq.O) print °, 'ERROR 1'.ix,ip-1

armn=ADRS(ix- 1,1yt)
krmn-adk(ix- I ,ibfI )

elseif(dmin(Ix,ibf 1).eq.2) then
armn-ADRS(ix,iy2)

krmn-adk(ix,ibf2)
elseif(dmin(ix,ibf 1}.eq 3) then

armn.ADRS(Ix+l.ty2)
krmn-adk(ix+ 1,ibf2)

elseif(dmin(ix,ibf 1) .eq.4) then
if(ix- 1.eq.0) print °, 'ERROR 4',ix.ip- 1

armn=ADRS(ix-t,ly2)
krmn.adk(ix-1 .ibf2)

elseif(dmin( bc,ibf 1).eq.5) then
iflag=l

else
wint *,'iy',ip-1 ,'ix',tx,'dmin',dmin(ix,ibfl).'N',N(kdlt)
endi|

if(iflag,eq.O) then
if(N(krmn).eq.1) then
N(krmn)-2
do 3110 ih=l,nh

3110

k-kdlt

bufk.(tk)=O

S(ih,krmn)-2"S(ih,ktmn)
continue
endtf
adk(ix,lbf 1)=krmn

ADRS(ix,lyl)=armn
la=la+l

bufa(ta)=adtt
endif

endif

31 O0 continue

Transrnttling the Featuree
° ....... °.,o°,...**o** ,°H,,,o,o°o,,.o.oo°°.

Ix-1
3001 ix-O
3200 Ix-lx+l

if(ADRS(Ix,ly2).eq.ADRS(Ix.fy I )) then
Ix-lx+l
ix-1

if(Ix+gt,nx) Ix=nx
endlf

if(ix,lt,nx) goto 3200
If(Ix.gt.nx) goto 3002
illag=O
if(Ix.gt. 1)then

do 3210 ix=l,lx-1
If(ADR S(Ix,ly2).eq.AD RS(ix.iy2)) iflag= I

3210 continue
endif

if(iflag.eq.O) then
aS=ADRS(lx.iy'2)

k5-adk(Ix,tbt2)
do 3220 ih-l,nh

X(ih) .nlnt(float(S(Ih,k5))/11oat(N(k5)))
3220 continue

write(10,*} a5

write(t0, °} X
endlf
Ix=lx+l

9010 3001
3002 ik=l

bufk(Ik)=ADRS(1,1yl)
kS-adk( 1,tbf 1)
do 3230 ih.t,nh

X(ih) .nint(float(S(ih,kS))/lloat (N(kS)})
3230 continue

write(10,') bufk(ik)
write(10,') X
do 330_ ix-l,nx

it_g-1
do 3310 Ik-l,k

if(ADRS(ix,iyl ).eq.bufk(Ik)) iflag-O
3310 continue

if(iflag.eq.1)then
ik-k+l

bufk(ik)=ADRS(ix.iyl )
k5=adk(ix,it_ 1)
do 3330 lh.l,nh
X(ih) .nint{float(S(ih,kS))/lloat (N(k5)))

3330 continue
write(10,*) bulk(k)
write(10, °) X
endif

3300 continue

do 500 iy.2,nq0
iy3. l+mod(iy3,nrp)

do 510 ix- 1,nx
ij=ADRS(tx,ly3)
ID-32+mod(ij.95)
scen(ix)-char(IO)

510 continue

wrlte(11,*) (ADRS(ix,iy3),ix- 1,nx)
500 continue

stop
end

o..°.°..o ........ ..°°°.°°°....,..oo.°

Functional No.1
**,.°°_.°o..°...o,.o°.....o °. ...... °

function DIS(nw,V,S,n,X,T, nh)

integer DIS,V(nh),S(nh),X(nh),T(nh),n,nh,nw
a-O.O

if(n.gt.lCO) then
do 20 I.l,nh
a.a÷abs((S(I}-(n°X(f)))/float(V(I)))

20 continue
else
do 10 I=t,nh

a=a+abs(((S(t)/float(n)) -fioat(X(I)))°(nw,'ltoal(T(I))))
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10 continue
er_,l
DIS-hint(a)
fMum
end

o,,.°°.°, °oo°°°°,4.,°***.°...,....°

Functional No.2
....._....**._.°°..............o.

function DIS2(nw.V,S.n.X.T,nh )
Integer OIS,V{nh).S(nh),X(nh),T(nh),n.nh,nw
a=0.0

b- 1.0_float(n+24)
c,..24./floal (nw'( n._24))
do 10 I-l.nh

a-a+al_(((S(I),'lloa|(n))-llo_(X(I))y(b'V(I]+c'T(I)))
10 continue

DIS,-nint(a)
return
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